其中第一条与变频器的运行控制有关,当电机降压运行时,不是所有的单元都输出功率,谐波并不能互相抵消。其他4条与变压器的制造工艺有关,都不太好处理。比如第5条,移相角的问题。以36脉冲为例,一共3*6=18个副边绕组,每6个一组,相互之间移10度。这10度相差一般是通过ZIGZAG的接线形成(EXTENDED-Y OR -D)。在这样小的角度下,用于产生相差的线圈经常只有几匝(大功率变压器本来匝数就少)。如果理论上,算出一个8.4匝,我们只能绕个8匝,这就有5%的匝数误差。反映到相角,有时相差一两度,怎么抵消谐波?根据我自己的经验,18脉冲变压器移相误差2度是经常的事,这时候电流中出现17次以下的低次谐波。脉冲数越多,移相角越小,变压器越是难做。这就是为什么高于36脉冲的变压器基本上做不出来。
回复内容:我不是搞变频器的,对电机几乎不懂,可能说的不对见谅。根据我搞高频逆变电源的经验,提高开关频率,输出电流(功率)不利是不对的,这点我申明一下。也可能我搞的东西跟你们不太一样,我们的电源20kHz的开关频率。如果我们搞的东西完全不一样的话,我觉得,从理论上讲,对方在逆变之后应该做了谐振的处理 对:深度迷糊关于佳灵的产品确实比较有特色。2电平的逆变器,逆潮流而动,做得还算成功。但我仍然有些疑问。据来自佳灵的资料说,他们的开关频率为3kHz,这在高压大功率中是比较高的。这么高的开关频率,对提高输出电流(功率)是不利得,而且对散热的要求很高。我怀疑负载电流到达一定程度时,他们只能降低载波频率,加大输出滤波器,但这面临成本和损耗的制约,特别是电抗器的发热。输出侧还必须考虑共模抑制的问题,这样需要另外一个共模电抗器。在我看来,加灵拓扑最大的隐患还不在逆变器,而在整流器。不使用变压器时,他们只能用六脉冲整流,输入电流必然含有相当高的5次和7次谐波。要满足谐波标准,他们必须使用输入滤波器。输入滤波器的谐振频率应该在4pu到5pu之间。考虑到6脉冲整流中5次谐波电流的含量高(可高达20%),这个滤波器小不了!6脉冲整流的另外一个副作用是 DC 纹波大,所以 DC LINK中要个镇流电感。这样佳灵的变频器一共就有4个电感:输入三相滤波电抗,DC扼流电感,输出三相滤波电抗以及共模电感。不知道加起来比变压器便宜多少?但是,我还是很佩服吴加林先生的,他有一股“下自己的蛋,让别人说去吧”的坚韧,能坚持到今天不容易。不过愚见以为他们确实应该认真考虑寻找更好的整流器结构。内容的回复: