关于运动控制方式问题,论坛上已有许多探讨。 在这里,仅将常见的几种控制方式加以简介。
基于脉冲加方向的控制模式最早是针对步进电机而来的。一个脉冲移动一步。然而,对于驱动器工作在位置方式的伺服系统也可以使用脉冲加方向控制模式。这种情况下,我们通常称为开环控制,因为控制系统只做轨迹规划而不做闭环。所产生的轨迹完全来源于理论,实际的运动效果则完全起决于驱动器位置环的控制效果。这类型的控制方式一般用于对运动精度要求不高的场合。常见的应用主要是点位运动。而对于需要实时插补走轨迹的应用则控制效果很差,如雕铣机、磨床、各类型的切割机等。造成实时插补位置误差的主要原因是加工速度和脉冲的分辨率。伴随着加工精度的不断提高,脉冲精度即步距变得越来越小,而随着加工速度的不断提高,单位时间内输出的脉冲频率不断提高会导致驱动器侧的计数器对于噪声的免疫能力大幅降低,从而出现所谓的丢脉冲的结果,这种问题在步进电机中极其常见,主要发生在高速运行的情况下。对于高速高精度的伺服电机, 如果使用脉冲加方向时,这种情况也同样会发生。另外,由于脉冲精度的有限性,脉冲加方向的加工精度也大大受限。比如,同样是加工一个曲面,使用脉冲家方向控制模式与采用模拟或直接PWM控制模式加工的结果虽然形状一样,但表面光洁度相差甚大。使用模拟或直接PWM驱动模式可以实现镜面加工,而使用脉冲加方向的零件则需要进一步的抛光处理。当然基于脉冲加方向的控制模式高于模拟量模式的性能主要体现在其全数字的特点,也就是说,只要不是高速高精度的场合,其对环境噪声的免疫能力比模拟控制模式高出很多。然而,其对噪声的灵敏度远大于全数字PWM控制模式。(待续)
基于模拟量的控制方式,随着驱动器工作方式的不同,可以分为模拟速度方式或模拟转矩方式。如上文所述,模拟方式区别于脉冲加方向模式,是一种对于控制器而言的闭环控制方式。如果驱动器工作在速度方式,则控制器闭位置环,而如果驱动器工作在转矩方式时,控制器闭速度和位置环。那么,两种模拟驱动方式有什么不同吗?不同之处主要在于以下几点:
1、参数调整的简易性不同。对于模拟速度方式,系统的参数调整必须在两套系统中完成,控制器和驱动器,这就造成了许多现场调参数的负担。尤其对于驱动器与控制器距离较远的大型设备,往返于控制器与驱动器参数调整的工作量是非常大的。通常这类型的参数调整需要及其漫长的时间。
2、参数的最优性不同。对于绝大多数的运动控制系统而言,基于刚体对象模型的PID或类PID(如PPI,PIV, PDF, PDFF等)控制算法被普遍使用。要想实现理论意义上的最优控制,无论速度环还是位置环都不能调到最优,否则全局肯定不会是最优。一定是大家都有所让步,全局才能最优。对于模拟速度模式,由于速度环和位置环分别在驱动器和控制器内,速度环参数调整到什么程度才是最优没有办法确定,只有当调好一组参数后,在回到控制器侧再调整位置环,如果位置环条不好,在重新调速度环,如此多次迭代调试才能调好。而对于模拟转矩模式,由于所有参数调整都在控制器内,其参数调整一般只需要十几分钟即可。对于复杂的模拟速度模式,通常想要调好一组参数花掉几个星期是很常见的。当然如果调参数的工程师对于对象特性十分了解且对于控制手段极其了解,在几天内调整好也是有可能的。
3、系统响应的实时性不同。通常控制器与驱动器的内部时钟是不同步的。而对于当采样不同步时,根据正态分布的原理,系统的传输延迟可以定义为采样周期的1/2。对于模拟速度模式,假如说在控制器伺服时钟的上升沿,位置环控制输出,即速度环指令输出,由于控制器位置环时钟与驱动器速度环时钟的不同步性,平均而言,速度环指令的延迟是驱动器速度环采样时钟的1/2。通常速度环采样频率为5Khz, 因此,由于速度环与位置环不在同一个采样系统内,造成了100usec的传输延迟,极大地降低了系统的稳定余度,大大降低了系统的闭环带宽和响应速度。
4、对于环境噪声的免疫程度不同。通常模拟速度模式对系统的零漂、温漂、偏移量、扰动和噪声的灵敏度较模拟转矩方式要大。(具体分析略) (带续)
从贵公司网站见过Copley为PMAC配的PWM放大器,但这仅能表明贵公司正在使用该技术,去不足以证明该技术是贵公司率先提出来的!
业界传闻Fanuc的伺服驱动器也只是个放大器,不过Fanuc用的不是PWM,而是提供Fanuc的光纤串行总线传输的数值化指令。力士乐主推的SERCOS III 和安川主推的Meachatrolink III 也都支持62.5us,乃至31.25us的电流环同步周期,可以由上位NC或者Motion Controller直接操控多个轴的电流闭环。至于直接数字指令更优,还是PWM更优,想必比贵公司也心知肚明。贵公司靠第三方提供PWM接口的电流放大器的举措也正是因为贵公司与力士乐和安川等的差异性所导致的必然结果,假如有一天贵公司也再是一个仅仅供应控制器的制造商的话,那时贵公司在自己的控制器和驱动器之间的接口肯定不会是PWM,而是贵公司那个叫做Macro光纤网络的某个翻版。
仁者见仁,智者见智!
内容的回复:不防看一看任何一本关于优化设计的书。全局最优与局部最优。对于任何优化问题, 如果某一个优化参数得到最优解,其全局肯定不会是最优,除非优化的指标错误。 对于运动控制系统而言, 最优的速度环只能保证速度的最优或者系统的阻尼最优,而位置的最优只能说位置控制的最优而系统的鲁棒性肯定不会最优。以常见的0.707阻尼比的一种最优控制而言, 了解自动控制原理的自然知道,这是一种基于刚体模型的全状态反馈控制,同时也是满足LQR 最优控制的解决方案,此时系统的稳定余度是最优的(45度相角余度)。然而,此时无论是速度环还是位置换都不是最优。 通常对于速度环最优的系统,位置环绝大多数是过阻尼的,即上升时间非常长,系统的带宽不高。但对于位置环最优的系统,则系统的稳定余度会非常小,即系统的鲁棒性不好。因此只有同时折中系统的鲁棒性和带宽的控制才是最优的,在这种情况下,绝对不是任何单一参数或环路最优所能实现的。