这几天看到一些帖子谈及富士和安川电机UVW动力线相序接错时导致飞车的故障,至于为什么会飞车,本人曾在个别帖子中认为是由于相序接错,导致电角度反转,电流环出现正反馈所致,但并未给出具体的相序分析。今日恰逢工作原因对此问题有所涉及,就仔细考虑了伺服电机UVW动力线相序接错可能导致的电角度偏移关系,感觉有所收获,先将分析结果贴出来与大家分享,如有异议,请不吝指正。
以U-V-W正常接入相序的电角度偏移量为0考虑,则
U-W-V相序的电角度偏移量为180度,恰好反向,Iq分量完全反转,完全正反馈,若伺服无正反馈检测机制,必然飞车;
V-W-U相序的电角度偏移量为120度,相位偏移超出90度,Iq分量符号反转,进入正反馈区;
V-U-W相序的电角度偏移量为300度,即-60度,相位偏移,Iq分量减半,出力明显变小,可导致实际电流变大,电机严重发热;
W-U-V相序的电角度偏移量为240度,即-120度,相位偏移超出-90度,Iq分量符号反转,进入正反馈区;
W-V-U相序的电角度偏移量为60度,相位偏移,Iq分量减半,出力明显变小,可导致实际电流变大,电机严重发热。
【9月18日 修订稿】
【2009年1月6-7日 修订补充】
本贴自发布之后,得到诸位网友的热情回复,其中也有不少不同意见,其中“当时明月在”的质疑和“bookujsnj”的当头棒喝非常好,令本人着手重新审视这个议题,巾帼这几日的仔细推敲,确实发现原结论的不少问题,在此本人对原贴出现的错误分析和观点,以及由此造成的误导深表不安和歉意!并感谢“当时明月在”和“bookujsnj”等网友的指正。现将最新看法整理如下:
本讨论的前提是:假定电机编码器初始安装相位正确,伺服驱动器将完全“采信”电机编码器的初始安装相位所表征的电机电角度相位,无需在伺服电机的UVW动力线接线连接后进行额外的电角度初始相位的调整或辨识,这一点也是目前绝大多数成套供应的泛用伺服系统的实际处理方式。
以电机动力线相序UVW对驱动器UVW接线端一一对应“正常接入”的相序为参考相序,按照三相交流电的一般相位关系,U领先V120度,V领先W120度,即U领先W240度,则有:
U-V-W正常接入相序。
电角度偏移量为0,电角度增量为+Δθ,后续电角度可表示为:+Δθ。
在α-β坐标中起始电流矢量角从270度正向递增,在d-q坐标系中的电流矢量角始终指向270方向,实现正交解耦。
此时伺服控制始终处于完全正交解耦的最佳状态。
电流环和速度环都运行正常。
U-W-V相序,U正确,W、V互反。
电角度偏移量为180度,电角度增量为 -Δθ,后续电角度可表示为:180 - Δθ。
在α-β坐标中起始电流矢量角从90度反向递减,在d-q坐标系中的电流矢量角由90方向2倍递减,起始方向偏离原正交方向(270度)180度正交于d轴,并逐步该偏离正交方向趋向d轴方向(0度)。
由于电机电角度增量方向与驱动矢量方向逆转,因而Iq分量是cos(180-2Δθ)的函数,90方向的起始相位恰好反向,Iq分量反转180度,在电流环下,电机瞬间反转,随着电机的转动,Iq分量迅速出现零值,并最终锁死于该点。速度环运行模式下,同样会瞬动后锁死。
V-W-U相序,电机与驱动器的各相顺序错位。
电角度偏移量为+120度,电角度增量为 +Δθ,后续电角度可表示为:120 + Δθ。
在α-β坐标中起始电流矢量角从30度正向递增,在d-q坐标系中电流矢量角始终指向30方向,偏离原正交方向(270度方向)+120度。
由于电机电角度增量方向与驱动的一致,Iq分量为cos(120)=-0.5,符号反转,在电流环下,电机反转,力矩有所减小。速度环运行模式下,速度正反馈飞车。
对于电机的w与pe接反仍然运转的情况,我也遇到过。
因为系统的PE一般都是连接在一起,单点接地的。电机接PE,除了动力线中的PE线以外,还通过机壳和编码器电缆与PE连接。将PE与W接反,就相当于将电机侧的W相和驱动器侧的W相都接到了PE上。此时回路是驱动器W -> 电机PE -> 驱动器PE -> 电机W,因此基本的电气关系(关系强弱似乎与接地系统的具体连接方式有关,如果伺服侧W相直接引入大地,电机可能就不会运转并导致跳闸)还存在,只是此时W相阻抗已经变化,三相不平衡,即使电机运转,其转速也非常不平稳,会有明显振动,且电机电流偏大,发热高。~~~
以上是我的分析,不妥之处恳请大家赐教。
对于电机的w与pe接反仍然运转的情况,我也遇到过。
因为系统的PE一般都是连接在一起,单点接地的。电机接PE,除了动力线中的PE线以外,还通过机壳和编码器电缆与PE连接。将PE与W接反,就相当于将电机侧的W相和驱动器侧的W相都接到了PE上。此时回路是驱动器W -> 电机PE -> 驱动器PE -> 电机W,因此基本的电气关系(关系强弱似乎与接地系统的具体连接方式有关,如果伺服侧W相直接引入大地,电机可能就不会运转并导致跳闸)还存在,只是此时W相阻抗已经变化,三相不平衡,即使电机运转,其转速也非常不平稳,会有明显振动,且电机电流偏大,发热高。~~~
以上是我的分析,不妥之处恳请大家赐教。
内容的回复:补充一点: 在上述分析中,所谓“正常接入相序”的U-V-W之间的相位关系为V领先U120度,W领先V120度,即W领先U240度。
再补充一点:在上述讨论中,假定电机编码器初始安装相位正确,伺服驱动器采信电机编码器的初始安装相位,不通再过伺服电机的UVW动力线检测或调整电角度初始相位,目前绝大多数泛用伺服的实际处理方式都符合该假设。
"伺服驱动器采信电机编码器的初始安装相位,不通再过伺服电机的UVW动力线检测或调整电角度初始相位,目前绝大多数泛用伺服的实际处理方式都符合该假设。"
这句话是不是有几个字敲错了,呵呵,我怎么读不通呢
神舟还经历过这等磨难!可见飞车的为害之大!
to"vesgine": “我的理解:电机的UVW的相序关系是相对的,因此驱动器的UVW和电机的UVW接线只有两种形式,一是正常相序,另一种就是相序接反。怎么会出现您一开始提到的6种情况?”———绝大多数泛用伺服驱动器的UVW接线端都是要求与伺服电机的UVW动力线严格对应的,尤其是成套供应的日系伺服系统莫不如此。至于为什么是6种,这是3对3连接关系的排列组合结果。
to“xzy568”:个人认为伺服一般无法直接检测出这两种状态,除非做电机电角度初始化确认,不过这种操作一般只在初次安装和维修之后采用,不会每次上电都做。但是设计合理的伺服应该具备正反馈故障检测,而且多数伺服具备过流和过载保护,超速保护等功能,可以间接起到保护作用。