整个智能制造试图从M2M到B2B、C2M,最后做一个横向和垂直的贯穿。这其实与德国倡议的工业4.0的三个集成:纵向、横向、端到端的整合不谋而合。
2019年3月21日,在IBM举行的“慧思无极,践行有道-think 2019服务中国行”认知型制造分会场上,IBM大中华区全球信息科技服务部资深管理咨询顾问王嘉年发表了主题为《工业互联驱动智能制造升级》的演讲,以下为演讲内容整理。
在最近召开的十三届全国人大二次会议举行记者会上,科技部相关负责人提到了科技创新“三步走”战略,即到2020年进入创新型国家,到2035年左右进入创新型国家前列,到2050年要成为世界科技强国。这个战略同时也说明了整个业务驱动智能制造与重塑竞争力的产业变革大趋势。在这一大趋势中,IBM有责任引导这一进程,IBM认为,智能制造的五大业务驱动力:劳动生产率、设备综合效率OEE、全面品质管理TQM、客户个性化需求、节能环保。
IBM智能制造的五大业务驱动力
那么,什么是智能制造?根据《国家智能制造标准体系建设指南(2018年)》,智能制造涉及十个领域,我们看到整个智能制造的系统架构被分成三个维度。首先是系统层级,主要指企业内部工业化和信息化的两化融合。其次是生命周期的层级,从设计、生产到物流、销售、服务,主要指企业之间的信息集成。最后是智能功能的层级,从资源要素、互联互通、融合共享到系统集成、新兴业态,主要谈效率。
整体而言,整个智能制造试图从M2M到B2B、C2M,最后做一个横向和垂直的贯穿。这其实与德国倡议的工业4.0的三个集成:纵向、横向、端到端的整合不谋而合。从这三个维度,IBM将分解整个智能制造的核心,也就是与数字工厂相关的部分,究竟牵涉到哪些领域?主要涉及十个领域:从研发、产线、车间、数字工厂、底层装备、物流,一直到产品、服务、管理和决策。
智能制造横跨M2M、B2B、C2M三个整合
首先是智能制造生命周期的维度。
生命周期以制造业信息化技术为框架,通过工业物联网采集数据、传输数据,以数据应用与数据服务进行效率提升、风控控制、资源整合到服务创新四个不同层次的智能功能的案例架构。
IBM认为的生命周期层级
第二个维度是系统层级。
系统层级以数字工厂为核心,涉及智能制造系统层级的车间层、控制层、与设备层,也是信息化系统(IT)纵向整合工业化环境(OT),实现两化融合的重要基础。其中,工业化的环境是以数字工厂为核心,从上面车间的生产管理到下面的生产控制,再到最底层相关设备的互联互通。
IBM认为的系统层级
第三个维度是智能功能。
智能功能,是以工业互联网为基础,展现的是相关的风险控制、效率提升、资源整合,一直到服务创新。很多演讲嘉宾也提到了相关的数据要对应到智能制造的整个价值链,从传感器、数据、数据的分析到信息的融合,到最后的认知、知识库反馈重新的建模。最终,都是希望呼应到智能制造中的五大业务驱动力。以OEE设备综合效率为例,IBM希望把生产事故提前到设备故障、到设备缺陷这样一个层级。
IBM认为的智能功能层级
根据国家标准化管理委员会发布的GB/T23001标准,是关乎信息化和工业化融合的管理体系。IBM基于这样的体系与标准,同时结合全球相关智能制造和工业4.0的经验,IBM有能力对智能制造的成熟度进行评估。其实,IBM的智能制造评估系统,对外部的网站有对外开放。所以感兴趣的朋友,登录IBM的网站,查找这样一个自我评估、健康检查的应用系统,对企业整个智能制造的成熟度进行评估。
IBM智能制造能力成熟度评估
(从管理体系的角度)
楼主最近还看过
整个智能制造试图从M2M到B2B、C2M,最后做一个横向和垂直的贯穿。这其实与德国倡议的工业4.0的三个集成:纵向、横向、端到端的整合不谋而合。
2019年3月21日,在IBM举行的“慧思无极,践行有道-think 2019服务中国行”认知型制造分会场上,IBM大中华区全球信息科技服务部资深管理咨询顾问王嘉年发表了主题为《工业互联驱动智能制造升级》的演讲,以下为演讲内容整理。
在最近召开的十三届全国人大二次会议举行记者会上,科技部相关负责人提到了科技创新“三步走”战略,即到2020年进入创新型国家,到2035年左右进入创新型国家前列,到2050年要成为世界科技强国。这个战略同时也说明了整个业务驱动智能制造与重塑竞争力的产业变革大趋势。在这一大趋势中,IBM有责任引导这一进程,IBM认为,智能制造的五大业务驱动力:劳动生产率、设备综合效率OEE、全面品质管理TQM、客户个性化需求、节能环保。
IBM智能制造的五大业务驱动力
那么,什么是智能制造?根据《国家智能制造标准体系建设指南(2018年)》,智能制造涉及十个领域,我们看到整个智能制造的系统架构被分成三个维度。首先是系统层级,主要指企业内部工业化和信息化的两化融合。其次是生命周期的层级,从设计、生产到物流、销售、服务,主要指企业之间的信息集成。最后是智能功能的层级,从资源要素、互联互通、融合共享到系统集成、新兴业态,主要谈效率。
整体而言,整个智能制造试图从M2M到B2B、C2M,最后做一个横向和垂直的贯穿。这其实与德国倡议的工业4.0的三个集成:纵向、横向、端到端的整合不谋而合。从这三个维度,IBM将分解整个智能制造的核心,也就是与数字工厂相关的部分,究竟牵涉到哪些领域?主要涉及十个领域:从研发、产线、车间、数字工厂、底层装备、物流,一直到产品、服务、管理和决策。
智能制造横跨M2M、B2B、C2M三个整合
首先是智能制造生命周期的维度。
生命周期以制造业信息化技术为框架,通过工业物联网采集数据、传输数据,以数据应用与数据服务进行效率提升、风控控制、资源整合到服务创新四个不同层次的智能功能的案例架构。
IBM认为的生命周期层级
第二个维度是系统层级。
系统层级以数字工厂为核心,涉及智能制造系统层级的车间层、控制层、与设备层,也是信息化系统(IT)纵向整合工业化环境(OT),实现两化融合的重要基础。其中,工业化的环境是以数字工厂为核心,从上面车间的生产管理到下面的生产控制,再到最底层相关设备的互联互通。
IBM认为的系统层级
第三个维度是智能功能。
智能功能,是以工业互联网为基础,展现的是相关的风险控制、效率提升、资源整合,一直到服务创新。很多演讲嘉宾也提到了相关的数据要对应到智能制造的整个价值链,从传感器、数据、数据的分析到信息的融合,到最后的认知、知识库反馈重新的建模。最终,都是希望呼应到智能制造中的五大业务驱动力。以OEE设备综合效率为例,IBM希望把生产事故提前到设备故障、到设备缺陷这样一个层级。
IBM认为的智能功能层级
根据国家标准化管理委员会发布的GB/T23001标准,是关乎信息化和工业化融合的管理体系。IBM基于这样的体系与标准,同时结合全球相关智能制造和工业4.0的经验,IBM有能力对智能制造的成熟度进行评估。其实,IBM的智能制造评估系统,对外部的网站有对外开放。所以感兴趣的朋友,登录IBM的网站,查找这样一个自我评估、健康检查的应用系统,对企业整个智能制造的成熟度进行评估。
IBM智能制造能力成熟度评估
(从管理体系的角度)