变频器的使用误区
误区1、使用变频器都能节电
一些文献宣称变频调速器是节电控制产品,给人的感觉是只要使用变频调速器都能节电。
实际上,变频调速器之所以能够节电,是因为其能对电动机进行调速。如果说变频调速器是节电控制产品的话,那么所有的调速设备也都可以说是节电控制产品。变频调速器只不过比其它调速设备效率和功率因数略高罢了。
变频调速器能否实现节电,是由其负载的调速特性决定的。对于离心风机、离心水泵这类负载,转矩与转速的平方成正比,功率与转速的立方成正比。只要原来采用阀门控制流量,且不是满负荷工作,改为调速运行,均能实现节电。当转速下降为原来的80%时,功率只有原来的51.2%。可见,变频调速器在这类负载中的应用,节电效果最为明显。对于罗茨风机这类负载,转矩与转速的大小无关,即恒转矩负载。若原来采用放风阀放走多余风量的方法调节风量,改为调速运行,也能实现节电。当转速下降为原来的80%时,功率为原来的80%。比在离心风机、离心水泵中的应用节电效果要小得多。对于恒功率负载,功率与转速的大小无关。水泥厂恒功率负载,如配料皮带秤,在设定流量一定的条件下,当料层厚时,皮带速度减慢;当料层薄时,皮带速度加快。变频调速器在这类负载中的应用,不能节电。
与直流调速系统比较,直流电动机比交流电动机效率高、功率因数高,数字直流调速器与变频调速器效率不相上下,甚至数字直流调速器比变频调速器效率略高。所以,宣称使用交流异步电动机和变频调速器比使用直流电动机和直流调速器要节电,理论和实践证明,这是不正确的。
误区2、变频器的容量选择以电动机额定功率为依据
相对于电动机来说,变频调速器的价格较贵,因此在保证安全可靠运行的前提下,合理地降低变频调速器的容量就显得十分有意义。
变频调速器的功率指的是它适用的4极交流异步电动机的功率。
由于同容量电动机,其极数不同,电动机额定电流不同。随着电动机极数的增多,电动机额定电流增大。变频调速器的容量选择不能以电动机额定功率为依据。同时,对于原来未采用变频器的改造项目,变频调速器的容量选择也不能以电动机额定电流为依据。这是因为,电动机的容量选择要考虑最大负荷、富裕系数、电动机规格等因素,往往富裕量较大,工业用电动机常常在50%~60%额定负荷下运行。若以电动机额定电流为依据来选择变频调速器的容量,留有富裕量太大,造成经济上的浪费,而可靠性并没有因此得到提高。
对于鼠笼式电动机,变频调速器的容量选择应以变频器的额定电流大于或等于电动机的最大正常工作电流1.1倍为原则,这样可以最大限度地节约资金。对于重载起动、高温环境、绕线式电动机、同步电动机等条件下,变频调速器的容量应适当加大。
对于一开始就采用变频器的设计中,变频器容量的选择以电动机额定电流为依据无可厚非。这是因为此时变频器容量不能以实际运行情况来选择。当然,为了减少投资,在有些场合,也可先不确定变频器的容量,等设备实际运转一段时间后,再根据实际电流进行选择。
内蒙古某水泥公司Φ24m×13m水泥磨二级粉磨系统中,有1台国产N-1500型O-Sepa高效选粉机,配用电动机型号为Y2-315M-4型,电动机功率为132kW,却选用FRN160-P9S-4E型变频器,这种变频器适用于4极、功率为160kW电动机。投入运行后,最大工作频率48Hz,电流只有180A,不到电动机额定电流的70%,电动机本身已有相当的富裕量。而变频器选用规格又比拖动电动机大1个等级,造成不应有的浪费,可靠性不会因此而提高。
安徽巢湖水泥厂3号石灰石破碎机,其喂料系统采用1500×12000板式喂料机,拖动电动机选用Y225M-4型交流电动机,电动机额定功率45kW,额定电流为84.6A。在进行变频调速改造前,通过测试发现,板式喂料机拖动电动机正常运行时,三相平均电流仅30A,只有电动机额定电流的35.5%。为了节省投资,选用ACS601-0060-3型变频器,该变频器额定输出电流为76A,适用于4极、功率为37kW电动机,取得了较好的使用效果。
这2个例子一反一正说明了,对于原来未采用变频器的改造项目,变频器的容量以实际工况为依据来选择可大幅度减少投资。
误区3、用视在功率计算无功补偿节能收益
用视在功率计算无功补偿节能效果。如文献【1】原系统风机工频满载工作时,电动机运行电流为289A,采用变频调速时,50Hz满载运行时的功率因数约为0.99,电流是257A,这是由于变频器内部滤波电容产生改善功率因数的作用。节能计算如下:ΔS=UI=×380×(289-257)=21kVA
因此该文认为其节能效果约为单机容量的11%左右。
实际分析:S即表示视在功率,即电压与电流的乘积,电压相同时,视在功率节约百分比与电流节约百分比是一回事。在有电抗的电路中,视在功率只是反映了配电系统的允许最大输出能力,而不能反映电动机实际消耗的功率。电动机实际消耗的功率只能用有功功率表示。在该例中,虽用实际电流计算,但计算的是视在功率,而不是有功功率。我们知道,电动机实际消耗的功率是由风机及其负载决定的。功率因数的提高并没有改变风机的负载,也没有提高风机的效率,风机实际消耗的功率没有减少。功率因数提高后,电动机运行状态也没有改变,电动机定子电流并没有减少,电动机消耗的有功功率和无功功率都没有改变。功率因数提高的原因是变频器内部滤波电容产生无功功率供给了电动机消耗。随着功率因数提高,变频器的实际输入电流减少,从而减少了电网至变频器之间的线损和变压器的铜耗。同时,负荷电流减小,给变频器供电的变压器、开关、接触器、导线等配电设备可以带更多的负载。需要指出的是,如果象该例一样不考虑线损和变压器铜耗的节约,而考虑变频器的损耗,变频器在50Hz满载运行时,不仅没有节能,而且还费电。因此,用视在功率计算节能效果是不对的。
某水泥厂离心风机拖动电动机型号为Y280S-4,额定功率为75kW,额定电压380V,额定电流140A。在进行变频调速改造前,阀门全开,通过测试发现,电动机电流70A,只有50%负荷,功率因数为0.49,有功功率为22.6kW,视在功率为4607kVA。在采用变频调速改造后,阀门全开,额定转速运行时,三相电网平均电流为37A,从而认为节电(70-37)÷70×100%=44.28%。这样计算,看似合理,实质上仍是以视在功率计算节能效果。该厂在进一步测试后发现,此时功率因数为0.94,有功功率为22.9kW,视在功率为24.4kVA。可见,有功功率增加,不但没有节电,反而费电。有功功率增加的原因是考虑了变频器的损耗,而没有考虑线损和变压器铜耗的节约。产生这种错误的关键在于没有考虑功率因数提高对电流下降的影响,默认功率因数不变,从而片面夸大了变频器的节能效果。因此,在计算节能效果时,必须用有功功率,不能用视在功率。
误区4、变频器输出侧不能加装接触器
几乎所有变频调速器使用说明书都指出,变频调速器输出侧不能加装接触器。如日本安川变频器说明书就规定“切勿在输出回路连接电磁开关、电磁接触器”。
厂家的规定是为了防止在变频调速器有输出时接触器动作。变频器在运行中连接负载,会由于漏电流而使过电流保护回路动作。那么,只要在变频调速器输出与接触器动作之间,加以必要的控制联锁,保证只有在变频调速器无输出时,接触器才能动作,变频调速器输出侧就可以加装接触器。这种方案对于只有1台变频调速器,2台电动机(1台电动机运行,1台电动机备用)的场合,具有重要的意义。当运行的电动机出现故障时,可以很方便地将变频器切换到备用电动机,经过延时使变频器运行,实现备用电动机自动投入变频运行。并且还可以很方便地实现2台电动机的互为备用。
误区5、变频调速器在离心风机中的应用,可完全取代风机的调节阀门
采用变频调速器对离心风机进行调速来控制风量,与调节阀门控制风量相比,具有明显的节电效果。但在有些场合,变频调速器不能完全取代风机的阀门,在设计中要引起特别注意。为了说明这个问题,我们先从其节电原理谈起。离心风机的风量与转速的一次方成正比,风压与转速的平方成正比,轴功率与转速的立方成正比。
如图1所示,曲线(1)为风机在恒速下,风压-风量(H-Q)特性;曲线(2)为管网风阻特性(阀门开度全开)。风机工作在A点时输出风量为Q1,此时轴功率N1与Q1、H1的乘积面积(AH1OQ1)成正比。当风量从Q1减少到Q2,如采用调节阀门方法,使管网阻力特性变到曲线(3)。系统由原来的工况点A变到新的工况点B运行,风压反而增加,轴功率N2与面积(BH2OQ2)成正比,N1与N2相差不多。如果采用调速控制方式,风机转速由n1降到n2,则风压-风量(H-Q)特性如曲线(4)所示,在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3(相当于面积CH3OQ2)随着显著减少,节能效果十分显著。
从上面的分析还可以看出,调节阀门控制风量,随着风量的减少,风压反而增加;而采用变频调速器调速来控制风量,随着风量的减少,风压大幅度下降。风压下降太多,有可能满足不了工艺要求。即如果工况点在曲线(1)、曲线(2)、H轴所围区域内部,单纯地依靠变频调速器调速将无法满足工艺要求,需要和阀门调节结合才能满足工艺要求。某厂引进的变频调速器,在离心风机中的应用中,因没有设计阀门,单纯地依靠变频调速器调速来改变风机工况点,吃尽了苦头。要么转速太高,风量太大;若降低转速,风压又满足不了工艺要求,吹不进风。因此离心风机在使用变频调速器调速节电时,要兼顾风量和风压这2个指标,否则会带来不良的后果。
误区6、 通用电动机只能在其额定转速以下采用变频调速器降速运行
经典理论认为,通用电动机频率上限为55Hz。这是因为当电动机转速需要调到额定转速以上运行时,定子频率将增加到高于额定频率(50Hz)。这时,若仍按恒转矩原则控制,则定子电压将升高超过额定电压。那么,当调速范围高于额定转速时,须保持定子电压为额定电压不变。这时,随着转速/频率的上升,磁通将减少,因此在同一定子电流下的转矩将减小,机械特性变软,电动机的过载能力大幅度减少。
由此可见,通用电动机频率上限为55Hz是有前提条件的:
1、定子电压不能超过额定电压;
2、电动机在额定功率运行;
3、恒转矩负载。
上述情况下,理论和试验证明,若频率超过55Hz,将使电动机转矩变小,机械特性变软,过载能力下降,铁耗急增,发热严重。
笔者认为,电动机实际运行状况表明,通用电动机可以通过变频调速器进行提速运行。能否变频提速?能提多少?主要是由电动机拖动的负载来决定的。首先,要弄清负荷率是多少?其次,要搞清楚负载特性,根据负载的具体情况,进行推算。简单分析如下:
1、事实上,对于380V通用电动机,定子电压超过额定电压10%长期运行是可以的,对电动机绝缘及寿命没有影响。定子电压提高,转矩显著增大,定子电流减少,绕组温度下降。
2、电动机负荷率通常为50%~60%
一般情况下,工业用电动机通常在50%~60%额定功率下工作。经推算,电动机输出功率为70%额定功率,定子电压提高7%时,定子电流下降26.4%,此时,即使是恒转矩控制,采用变频调速器提高电动机转速20%,定子电流也不但不会上升,反而会下降。尽管提高频率后,电动机铁耗急增,但由其产生的热量与定子电流下降而减少的热量相比甚微。因此,电动机绕组温度也将明显下降。
3、负载特性各种各样
电动机拖动系统是为负载服务的,不同的负载,机械特性不同。电动机在提速后必须满足负载机械特性的要求。经推算恒转矩负载不同负荷率(k)时的允许最高运行频率(fmax)与负荷率成反比,即fmax=fe/k,其中fe为额定工频。对恒功率负载,通用电动机的允许最高工作频率主要受电动机转子和转轴的机械强度限制,笔者认为一般限制在100Hz以内为宜。
应用实例:
我厂链斗输送机为恒转矩负载,因产量提高,需将其电动机转速提高20%。该电动机型号为Y180L-6,额定功率15kW,额定电压380V,额定电流31.6A,额定转速980r/min,效率89.5%,功率因数0.81,运行电流18~20A,正常时最大运行功率7.5kW,负荷率为50%。安装CIMR-G5A4015型变频调速器后,运行频率60Hz,提高转速20%,变频器输出电压最高设定为410V,电动机运行电流12~15A,下降30%左右,电动机绕组温度明显下降。
误区7、忽视变频器的自身特点
变频调速器的调试工作一般由经销厂家来完成,不会出现什么问题。变频调速器的安装工作较简单,一般由用户来完成。一些用户不认真阅读变频调速器的使用说明书,不严格按照技术要求进行施工,忽视变频器自身特点,将其等同于一般电气器件,凭想当然和经验办事,为故障和事故埋下了隐患。
根据变频调速器的使用说明书的要求,接到电动机的电缆应采用屏蔽电缆或铠装电缆,最好穿金属管敷设。截断电缆的端头应尽可能整齐,未屏蔽的线段尽可能短,电缆长度不宜超过一定的距离(一般为50m)。当变频调速器与电动机间的接线距离较长时,来自电缆的高谐波漏电流会对变频调速器和周边设备产生不利影响。从变频器控制的电动机返回的接地线,应直接连到变频器相应的接地端子上。变频器的接地线切勿与焊机及动力设备共用,且尽可能短。由于变频器产生漏电流,与接地点太远则接地端子的电位不稳定。变频器的接地线的最小截面积必须大于或等于供电电源电缆的截面积。为了防止干扰而引起的误动作,控制电缆应使用绞合屏蔽线或双股屏蔽线。同时要注意切勿将屏蔽网线接触到其它信号线及设备外壳,用绝缘胶带缠包起来。为了避免其受到噪声的影响,控制电缆长度不宜超过50m。控制电缆和电动机电缆必须分开敷设,使用单独的走线槽,并尽可能远离。当二者必须交叉时,应采取垂直交叉。千万不能将它们放在同一个管道或电缆槽中。而一些用户在进行电缆敷设时,没有严格按照上述要求进行施工,导致在单独调试时设备运转正常,正常生产时却干扰严重,以致不能运行。
如某水泥厂二次风温表突然出现指示异常:指示值明显偏低,且大幅度波动。在此之前一直运行很好。检查热电偶、温度变送器及二次仪表,均未发现问题,将相关仪表移到其他测点,仪表运行完全正常,而将其他测点的同类仪表换到此处,也出现同样现象。后发现在篦冷机3号冷却风机电动机上新安装了1台变频调速器,而且正是变频器投用后二次风温表才出现指示异常状态。试将变频器停运,二次风温表指示立即恢复正常;再起动变频器,二次风温表又出现指示异常,连续反复试验几次均是如此,从而判断出变频器的干扰是造成二次风温表显示异常的直接原因。该风机为离心式通风机,原来采用阀门调节风量,后改为变频调速调节风量。由于现场粉尘较大,环境恶劣,故将变频器安装在MCC(电动机控制中心)控制室。为了施工方便,变频器接在该风机主接触器的下侧,变频器输出电缆使用该风机电动机的动力电缆。该风机电动机的动力电缆为聚氯乙烯绝缘无钢铠护套电缆,并与二次风温表信号电缆在同一电缆沟的不同桥架层平行敷设。可见,正是因为变频器输出电缆没有采用铠装电缆或穿铁管敷设,导致了干扰现象的发生。这个教训对原来没有采用变频器的改造项目要引起特别注意。
在变频调速器的日常维护中也要特别小心。有的电工一发现变频器故障跳停,就立即打开变频器进行维修。这样做是很危险的,有可能发生人身触电事故。这是因为即使变频器不处于运行状态,甚至电源已经切断,由于其中的电容器的存在,变频器的电源输入线、直流端子和电动机端子上仍然可能带有电压。断开开关后,必须等待几分钟后,使变频器放电完毕,才能开始工作。还有的电工习惯于一发现变频调速系统跳停,就立即用摇表对变频器拖动的电动机进行绝缘测试,从而判断电动机是否烧毁。这也是很危险的,易使变频器被烧。因此,在电动机与变频器之间的电缆未断开前,绝对不能对电动机进行绝缘测试,也不能对已连接到变频器的电缆进行绝缘测试。
对变频器的输出参数进行测量时也要特别注意。由于变频器的输出为PWM波形,含有高次谐波,而电动机转矩主要依赖于基波电压有效值,故测量输出电压时,主要是测量基波电压值,使用整流式电压表,其测量结果最接近数字频谱分析仪测量值,而且与变频器的输出频率有极好的线性关系。若需进一步提高测量精度,可以采用阻容滤波器。数字万用表容易受干扰,测量有较大的误差。输出电流需要测量包括基波和其他高次谐波在内的总有效值,因此常用的仪表是动圈式电流表(在电动机负载时,基波电流有效值和总电流有效值差别不大)。当考虑到测量方便而采用电流互感器时,在低频情况下电流互感器可能饱和,所以,必须选择适当容量的电流互感器。
延长变频器使用的几点建议
随着通用变频器市场的日益繁荣,其年用量愈日剧增,但是,变频器在不同的运行条件下还存在一些不尽人意的地方,导致其使用寿命缩短及其附属设备的安装、调试、日常维护及维修工作量也相应增加,从而给用户造成了重大的直接和间接经济损失。现从变频器的应用环境、电磁干扰与抗干扰、电网质量等方面进行了分析,提出了使用变频器时应注意的问题及相应的改进建议,相信这对提高变频器使用寿命会有显著的效果。
1 电磁干扰对变频器的影响
在现代工业控制系统中,多采用微机或者PLC 控制技术,在系统设计或者改造过程中,一定要注意变频器对微机控制板的干扰问题。变频器受外界干扰来源如图1 所示,由于用户自己设计的微机控制板一般工艺水平差,不符合EMC国际标准,在采用变频器后,产生的传导和辐射干扰,往往导致控制系统工作异常,因此需要采取下述必要措施。
1)良好的接地。电机等强电控制系统的接地线必须通过接地汇流排可靠接地,微机控制板的屏蔽地,应单独接地。对于某些干扰严重的场合,建议将传感器、I/0接口屏蔽层与控制板的控制地相连。
2)给微机控制板输入电源加装EMI滤波器、共模电感、高频磁环等,可以有效抑制传导干扰。另外,在辐射干扰严重的场合,如周围存在GSM、或者小灵通基站时,可以对微机控制板添加金属网状屏蔽罩进行屏蔽处理。
3)给变频器输入端加装EMI 滤波器,可以有效抑制变频器对电网的传导干扰,加装输入交流和直流电抗器,可以提高功率因数,减小谐波污染,综合效果好。在某些电机与变频器之间距离超过100 m 的场合,需要在变频器侧添加交流输出电抗器,解决因为输出导线对地分布参数造成的漏电流保护和减少对外部的辐射干扰。一个行之有效的方法就是采用钢管穿线或者屏蔽电缆的方法,并将钢管外壳或者电缆屏蔽层与大地可靠连接。值得注意的是在不添加交流输出电抗器时,如果采用钢管穿线或者屏蔽电缆的方法,增大了输出对地的分布电容,容易出现过流。当然在实际应用中一般采取其中的一种或者几种方法。
4)对模拟传感器检测输入和模拟控制信号进行电气屏蔽和隔离。在变频器组成的控制系统设计过程中,建议尽量不要采用模拟控制,特别是控制距离大于1m,跨控制柜安装的情况下。因为变频器一般都有多段速设定、开关频率量输入输出,可以满足要求。如果非要用模拟量控制时,建议一定采用屏蔽电缆,并在传感器侧或者变频器侧实现远端一点接地。如果干扰仍旧严重,需要实现DC/DC隔离措施。可以采用标准的DC/DC模块,或者采用对v/f转换光隔离,再采用频率设定输入的方法。
2 工作环境的影响
在变频器实际应用中,由于国内客户除少数有专用机房外,大多为了降低成本,将变频器直接安装于工业现场。工作现场一般有灰尘大、温度高、湿度大的问题,还有如铝行业中有金属粉尘、腐蚀性气体等等。因此必须根据现场情况做出相应的对策,如图2 所示。
1)变频器应该安装在控制柜内部。
2)变频器最好安装在控制柜内的中部;变频器要垂直安装,正上方和正下方要避免安装可能阻挡排风、进风的大元件。
3)变频器上、下部边缘距离控制柜顶部、底部、或者隔板、或者必须安装的大元件等的最小间距,应该大于300 mm。
4)如果特殊用户在使用中需要取掉键盘,则变频器面板的键盘孔,一定要用胶带严格密封或者采用假面板替换,防止粉尘大量进入变频器内部。
5)在多粉尘场所,特别是多金属粉尘、絮状物的场所使用变频器时,总体要求控制柜整体密封,专门设计进风口、出风口进行通风;控制柜顶部应该有防护网和防护顶盖出风口;控制柜底部应该有底板和进风口、进线孔,并且安装防尘网。
6)多数变频器厂家内部的印制板、金属结构件均未进行防潮湿霉变的特殊处理,如果变频器长期处于恶劣工作环境下,金属结构件容易产生锈蚀。导电铜排在高温运行情况下,会更加剧锈蚀的过程,对于微机控制板和驱动电源板上的细小铜质导线,锈蚀将造成损坏。因此,对于应用于潮湿和和含有腐蚀性气体的场合,必须对所使用变频器的内部设计有基本要求,例如印刷电路板必须采用三防漆喷涂处理,对于结构件必须采用镀镍铬等处理工艺。除此之外,还需要采取其它积极、有效、合理的防潮湿、防腐蚀气体的措施。
3 电网质量对变频器的影响
在冲击负载如电焊机、电弧炉、轧钢机等场合,电压经常出现闪变;在一个车间中,有多台变频器等容性整流负载在工作时,其产生的谐波对于电网质量有很严重的污染,对设备本身也有相当的破坏作用,轻则不能够连续正常运行,重则造成设备输入回路的损坏。可以采取下列的措施。
1)在冲击负载如电焊机、电弧炉、轧钢机等场合建议用户增加无功静补装置,提高电网功率因数和质量。
2) 在变频器比较集中的车间,建议采用集中整流,直流共母线供电方式。建议用户采用12脉冲整流模式。优点是谐波小、节能,特别适用于频繁起动、制动,电动机处于既电动运行与发电运行的场合。
3)变频器输入侧加装无源LC滤波器,减小输入谐波,提高功率因数,可靠性高,效果好。
4) 变频器输入侧加装有源PFC 装置,效果最好,但成本较高。
4 结语
从变频器实际应用系统中出现的问题出发,从外界因素的干扰、使用环境、电网质量等方面,有针对性地提出了在实际应用中由于不良因素对变频器的影响,然后就此问题总结出一些解决问题的方法及改进的建议,对于变频器延长使用寿命能起到很好的效果,在实际工程中应用有一定的参考价值。
楼主最近还看过