摘要:台达F系列
变频器 PID控制在供水行业里的应用
关键字:PID 差频同相
1 引言
在变频技术应用还未广泛的时期,区域供水系统都是经由市政管网经过二次加压和高位水塔储水池来满足用户对供水压力的要求。日常供水控制通常采用水泵恒速运行加上调整出口阀开度的方式调节供水的水量水压。而由水泵的扬程特性图及管阻特性图可知这种靠调节输出阀门来进行恒压供水的方式使得大量能量消耗在出口阀门而造成浪费,而且存在水池的二次污染问题。
2 恒压供水原理
2.1 供水原理
变频技术通过调速节约了在改变阀门开度上造成的能量浪费,并且由于取消水塔而从原理上解决二次污染问题。阀门控制法的本质是水泵本身的供水能力不变,通过改变水路中的管阻大小来改变流量,以适应用户对流量的需求。而转速特性是在阀门开度不变的情况下,通过调节转速来达到用户要求的水量。我们知道流量与扬程的乘积近似为供水功率,如图1水泵的扬程特性及管阻特性图所示,假定现在用户用水量稳定在E点,我们可以看到在阀门开度不变的情况下单纯调节转速所需要的供水功率(面积OECD)小于转速不变而单纯调节阀门所需的供水功率(面积ABOE),所以说变频技术节约了能量,并且解决了二次污染问题。(如图1所示,面积ABCD即为节约的能量)。
现有的变频水泵恒压供水方式基于PID控制原理,简单概括就是:维持管路供水压力的恒定。当用户用水量加大时,管路压力减小,
变频器转速要提高以增加流量补充压力。反之,用户用水量减小时,管路压力增大,
变频器转速要降低,使流量适当降低以使压力恒定。
2.2 多泵供水
多泵供水是最常见的变频供水方案。多泵建筑供水系统普遍采用
变频器循环控制方式。多泵控制思路是一拖多工变频结合复合式变流量变频供水。在小流量用水时工况,
变频器带一台水泵运行,随用水量的变化,调整水泵的转速,实现恒压供水;当用水量增大,
变频器达到50HZ时,
变频器发出指令,使该变频泵切换到工频,同时使
变频器带动下一台水泵变频软启动运行。随用水流量增大,以后各台水泵的软启动依次类推。当用水量减小时,先停转为工频运行的那台水泵。系统主电路如图1所示。有一点需要说明,由于水泵在工频运行时,
变频器不可能对电机进行过载保护,所以必须接入热继电器FR,用于工频运行时的过载保护。
我们以台达
变频器VFD-F系列为例,其输入,输出端子外部接线见图2,RA1至RA8为多功能继电器输出端子,其中RA3至RA8为选件RY00所提供。为便于理解,把图1控制电路图进行简化,简化后的图省略了断路器,热继电器。在这之前我们要先注意到由于在
变频器的输出端是不允许与电源相连接的,因此接触器KM1和KM2绝对不允许同时接通,相互之间必须有非常可靠的机械互锁。经验表明,KM1和KM2采用有机械互锁的接触器是工程推荐的机电复合可靠性设计。同时,电机側由KM1切离到KM2闭合之间的延迟时间也是必须的,这可通过调节F系列
变频器11-04的时间参数来实现。
现在根据图2所示简略描述工变频切换过程。假定现在用户用水流量加大,管道中的压力减小,1号变频泵达到11-06所设定的50HZ后仍未满足压力要求,此时需要加泵以补充管网压力,KM1要等到11-05参数所设定的延迟时间后当面板显示Pu-cH几个字母后(
变频器完全停止输出以后)断开,然后KM2要经过11-04所设置的延迟时间后闭合,同时KM3闭合。
当用户用水量继续加大,管道中的压力再一次下降,需要再次加泵以补充管网压力,频率达到11-06所设定的参数50HZ后仍未满足压力要求,KM3要经过11-05所设置的延迟时间后,当面板显示Pu-cH几个字母后断开,然后KM4要经过11-04所设置的延迟时间后闭合,同时KM5闭合。
当用户用水量减小时,管道中的压力回升,需要减工频泵,本着先起先停的原则,1号水泵先启动所以一号水泵先停,KM2断开。如果用水量进一步减小,再接着停2号水泵,KM4断开。此时只有3号水泵在变频运行,如果用水量再次减小(比如说深夜无人或很少人用水的情况下),输出频率减小,当
变频器检测输出频率到参数11-08(休眠频率)所设定的值后经过参数11-07的延迟时间,开始进入休眠状态。为了防止在短时间内水泵时起时停的“振荡”现象,需要设置一个确认时间T,如果低于下限频率的时间小于T,
变频器可以不必理会;只有当超过下限频率的时间较长,大于确认时间T的时候,变频泵才会休眠。这也就是参数11-07延迟时间的意义。
当夜间过去后,白天到来用水量开始增大,此时