数字化双胞胎是实际产品或流程的虚拟表示,用于理解和预测对应物的性能特点。整个产品生命周期特指设计阶段,生产装配阶段和使用维护阶段三个部分。结合多物理场仿真、数据分析和机器学习,数字化双胞胎并不局限于单纯的数值仿真或者机器学习技术。相对于传统的数值仿真方法,数字化双胞胎可以应用物理实体反馈的数据进行自我学习和完善;另一方面,相对于机器学习,数字化双胞胎可以通过对物理过程的仿真和领域知识提供更加准确的理解与预测。
1. 产品的数字化双胞胎
产品的数字化双胞胎背后的关键技术涉及以下几个方面:
数字建模
这里的数字建模不仅指代对产品几何机构和外形的三维建模。对产品内部件的运动约束,接触形式,电气系统,软件与控制算法等信息进行全数字化的建模技术同样是建设产品数字化双胞胎的基础技术。
一体化的仿真验证
对单个维度物理性能或系统性能进行数值仿真的技术在当前已经比较成熟。然而,对于复杂的实际产品,其运行时的性能涉及到多物理场、多学科的综合作用。举例而言,对海上漂浮的风力发电平台进行产品数字化双胞胎开发,就需要同时集成涡轮叶片的空气动力特性、浮体的水动力特性、浮体的结构变形特性,发电系统的响应特性,控制系统的逻辑与算法等多个方面的一体化仿真验证技术。
为此,在数字化模型的基础上,基于单个系统或多个系统的联合仿真对产品的性能进行预测分析同样是实现产品数字化双胞胎的重要技术。
其他技术
实现完备的产品数字化双胞胎,还需要建模和仿真之外的其他技术,如创成式设计技术,基于历史数据的仿真结果校准技术等等。
2. 生产的数字化双胞胎
生产的数字化双胞胎针对于生产装配的过程,在产品实际投入生产之前通过仿真等手段验证制造流程在各个条件下的实际效果,最终达到加快生产速度与稳定性的目的。
生产的数字化双胞胎背后包括以下几个方面的关键技术:
生产规划建模与仿真
对各个生产单元及其在一起共同工作时的生产流程进行建模与仿真,是建立生产的数字化双胞胎的基础。这其中包括对各个生产单元的数字化建模与展示,也包括对物料流、排程排产逻辑、自动引导车(AGV)控制算法等生产流程的数值仿真。
虚拟的生产调试
在生产的执行阶段,对各个生产单元内的工作流程与效率进行的过程建模与仿真,也是生产的数字化双胞胎的重要基础。这其中可以包括机械设备自动化操作过程的仿真,例如在汽车的装配过程中,对多个协同工作的机器手臂控制算法进行虚拟调试,是验证总体结果,保证生产顺利进行的重要步骤。另一方面,在自动化运行的设备之外,对生产单元内人机交互过程的仿真和调试也是生产的数字化双胞胎的背后技术之一。
3. 性能的数字化双胞胎
性能的数字化双胞胎,既包括实际生产产品的生产执行阶段的生产性能数字化双胞胎,也包括产品投入使用时的产品性能数字化双胞胎。前者面向的是工厂与制造商,基于生产线的实际情况与运行信息反馈对生产的数字化双胞胎进行调整与优化;后者面向的是产品的使用客户,基于物理传感器等信息对具体产品的实际特性进行提取与分析,实现预测性维护等功能,也可以通过产品的实际运行信息反馈指导产品的设计方案。
总体而言,性能的数字化双胞胎将从物理实体中获得数据输入,并通过数据分析将实际结果反馈到整个数字化双胞胎体系中,产生封闭的决策循环。
实现性能的数字化双胞胎需要以下几类关键技术:
快速仿真,实时预测
在生产的实际执行阶段或者产品的运行阶段,原材料、设备、流程、人员或者环境参数、运行状态等系统信息随时会出现调整与变动,而性能的数字化双胞胎需要将这些变动实时的在数字空间内进行更新。为此,结合物理传感器输入的数据进行快速、实时的仿真与预测是性能的数字化双胞胎的重要技术。
举例而言,在产品投入运行后,基于数据输入与快速仿真技术可以对重要但难以测量的性能参数进行实时的仿真计算,实现对产品的预测性维护等功能。视频内就是电机运行过程中,对电机内部温度应用性能的数字化双胞胎进行分析的例子。
大数据分析,数据闭环
生产线或产品的各个物理传感器会产生大量的数据,对这些实际数据应用机器学习等方法进行分析是实现主动响应,事故溯源,预测性维护等数字化双胞胎信息反馈功能的重要技术。例如,生产性能的数字化双胞胎可以对生产过程中出现的事故等实际情况进行数据提取,通过机器学习与数值模拟验证等方式实现原因分析,并针对事故原因提出产品设计、生产流程设计中针对性的改进方案。
-----------------------------------------------------------------------
总结而言,数字化双胞胎背后的关键技术涉及数值建模与仿真、机器学习以及将信息连接起来的物联网、云平台等领域,对这些领域内的数据和应用的集成能力同样是数字化双胞胎的关键技术。当前,数字化双胞胎的应用领域与范畴还在不断发展,以上各个领域的突破都可能会提高数字化双胞胎的实际能力,成为未来数字化双胞胎概念的关键技术。
楼主最近还看过