有奖专题讨论:无处不在的MEMS都有哪些典型应用呢? 点击:2614 | 回复:61



GKstudying

    
  • [管理员]
  • 精华:4帖
  • 求助:4帖
  • 帖子:1023帖 | 7244回
  • 年度积分:1284
  • 历史总积分:18892
  • 注册:2008年11月11日
发表于:2017-02-15 10:24:19
楼主

  MEMS即微机电系统(Microelectro Mechanical Systems),是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。随着物联网及智能装备的不断发展,MEMS传感器的应用也日益广泛。

在本期的有奖专题讨论中我们将围绕在物联网产业链中起着关键性作用的MEMS智能传感器的一些典型应用,展开深入的交流探讨,希望广大工程师朋友们畅所欲言,说一说那些我们不知道的MEMS传感器的有趣应用吧!

活动规则

一、参与方式

通过中国工控网论坛的有奖专题讨论:无处不在的MEMS都有哪些典型应用呢?主题帖,登陆后在主题帖下直接发帖回复,即视为参与本次活动。

二、 发帖内容及规则    

1.  发帖规则:用户需在中国工控网论坛指定活动版块下发帖,讨论与活动主题相关的内容。将帖子发至其他栏目或版块的,则视为无效。参与用户有两种发帖方式可以选择:

1.1在工控网论坛-离散传感器版块:http://bbs.gongkong.com/product/Discretesensors.htm发帖,然后将文章标题及其链接在活动回复区直接回复

1.2用在此活动专题主题帖下直接发帖回复。

2.内容要求:内容需原创,陈述清晰、详细,以MEMS传感器的应用介绍为主

3.发帖题目要求:#主题#+讨论题目,例如#应用# MEMS传感器在苹果手机中的应用

4. 不得刻意宣传或诋毁某品牌及其产品。

三、奖项设置及评奖说明

四、活动截止时间

截止201732,截止后工作日统计获奖名单并联系用户发奖。








楼主最近还看过



研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:13:10
21楼

Pixtronix公司推出MEMS显示器

MEMS显示器


Pixtronix公司在2009年SID(Society for Information Display,国际资讯显示学会)“显示器周”上公开了其自主研发的MEMS显示器。Pixtronix展示了一款2.5英寸(320×240像素)的显示器原型样机,可以显示全彩视频。 

MEMS显示器基于Pixtronix的PerfectLight技术,由LED背光、两片玻璃面板、MEMS快门、TFT基板组成。MEMS快门的尺寸约为160×160μm,最快切换时间为100μs。该显示器是透射式的,不需要滤光片或偏振片。 

PerfectLight通过分时点亮RGB背光并结合MEMS快门来产生各种色彩。虽然快门只有开-关两个状态,仍可以利用改变LED点亮的占空比和快门的开关次数来产生所需的灰度。使用这种方法,PerfectLight可以显示24位色(1600万色)的图像,并能提供145%的NTSC的色域。其对比度为1000:1,可视角达到170°。 

相对于现有的透射式显示器,该MEMS显示器的最大优点在于可以大大节省能源。PerfectLight的显示器能耗仅是LCD的1/4,展出的2.5英寸显示器功耗仅45mW。该公司人员说:“LCD仅能利用背光的百分之几,PerfectLight由于没有滤光片,可以有效利用60%的能量”。 

该显示器最初的目标市场是汽车导航市场。Pixtronix计划把分辨率增加到800×480(WVGA),这样就可以应用到智能手机、笔记本,甚至电视上了。Pixtronix已经同亚洲的面板制造商签订了相关协议,预计其产品将在2010年发布。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:14:07
22楼

如何利用MEMS惯性感测技术实现应用变革

  虽然MEMS(微电子机械系统)技术被用于安全气囊和汽车压力传感器领域已有二十年左右,但却是任天堂Wii和苹果iPhone的热销使人们更广泛地了解惯性传感器的用途,这些产品使用了基于运动感测技术的用户界面。 
  尽管如此,在一定程度上业界的观念仍停留在惯性传感器主要是用于终端产品检测加速度和减速度的应用。从纯粹的科学角度来看,这种说法完全正确,但这样的观点却忽略了许多MEMS加速计和陀螺仪的扩展应用,包括在医疗设备、工业设备、消费电子产品和汽车电子等领域。
  五种运动感测模式中,每一种模式都将极大地超越当前大批量MEMS的应用。这五种模式分别是:加速(包括平移运动,如位置和方向的改变),震动,冲击,倾斜,旋转。
  例如,一个带运动检测的加速计在设备没有受到外界移动或震动时将其界定为非激活状态,并指示设备进入最低功耗模式,从而实现功率管理。复杂的控制机构和物理按钮被手势识别接口替代,而它是通过手指点击来控制。在其它使用案例中,终端产品的操作变得更精确,例如,对用户手中的指南针进行倾斜角度补偿。
  本文介绍了一些应用案例,分享先进的商业化MEMS加速计和陀螺仪通过5种类型的运动感测来改变众多不同范围的终端产品的方法。
  运动感测和MEMS介绍
  加速、震动、冲击、倾斜和旋转——除了旋转外,其它四种运动实事上都是加速度在不同时间段的表现。然而,我们人类是无法靠直觉来做出运动状态的判断,例如震动是加速还是减速。分别地考虑每一种模式可以帮助我们想出更多可能的应用。
  加速度(包括平移运动)是测量在单位时间内的速度变化。速度以米/秒(m/s)来表示,并且同时包括位移速率和运动方向。因此,加速度就以米/秒2(m/s2)来表示。加速度有时候会是负值——如司机踩刹车时车速变慢,这时也被称作减速度。
  现在来考虑加速度在不同时间段的表现。震动可被认为是迅速且周期性发生的加速和减速运动。类似的,冲击则是瞬间发生的加速,但是不同于震动,冲击是一种非周期性运动,一般只发生一次。
  我们把时间再延长一些。当对象被移动而改变倾斜度或偏角时,与重力相关的一些位置变化被牵扯进来。与震动和冲击相比,倾斜运动的发生往往相当缓慢。
  由于前四种模式的运动感测各自都与加速度有某种关系,它们可通过“g力”(地球引力)来测量,g是万有引力对地球上物体产生的单位力(1g等于9.8m/s2。)。MEMS加速计通过测量重力对加速计轴的作用力来检测倾斜度。以3轴加速计为例,三个不同的输出分别测量运动的X、Y和Z轴加速度。
  时下占市场最大份额的加速计使用差分电容测量g力,接着g力被转换成电压或数据位(数字输出加速计应用),最后被传递到微处理器上以便执行某种行为。近来在技术上取得的进步,使业界能制造出低g和高g感测范围的微型MEMS加速计,且比以往产品的带宽更高,从而大大增加了潜在应用领域。低g感测范围是指低于20g,这可以涉及到人类能产生的运动。高g则用于感测与机器或交通工具有关的运动—也就是人类没法产生的运动。
  以上我们讨论的仅是线性速率运动,运动类型包括加速、震动、冲击和倾斜。旋转则是一种角速率运动的测量,它不同于其它运动模式,这是因为旋转运动可能不伴有加速度的变化。为了理解旋转的工作原理,我们想像一个3轴惯性传感器:假定传感器的X和Y轴与地球表面是平行的,Z轴指向地心。在这个位置,Z轴测得的作用力为1g,而X和Y轴则为0g。现在转动传感器使其运动仅与Z轴相关。X和Y平面在转动,继续测得0g,同时Z轴仍然为1g。
  MEMS陀螺仪被用于感测这种旋转运动。由于某些终端产品除了测量其它类型的运动外还必须测量旋转运动,陀螺仪可被集成在一个内嵌多轴陀螺仪和多轴加速计的IMU(惯性测量单元)中。
  加速感测用于功率管理
  在早期,加速度感测技术被用于检测运动和位置变化。利用MEMS加速计可以感测到设备被拿起或放下,当检测到这两种动作时就可以发出一个中断信号来自动控制电源的开和关功能。不同的功能组合可被保持在激活状态,或者被置于低功耗状态。对用户来说,这种由运动检测控制的开/关功能是受欢迎的,因为它避免了用户的重复动作。另外,它们实现了功率管理,能使设备在下次充电或更换电池之前有更长的使用时间。带背光LCD的智能遥控器是众多可能的应用之一。
  另一种使用加速计来感测运动和产生中断信号的应用,则是用于军事或公共安全人员的无线通信设备。为保证通信的安全,当该设备被使用者卸下或放起来后,下次使用前必须再次进行身份认证。对便携或小外形的设计来说,上面这些应用需要采用只需要很小电流的加速度计,最多几个微安(µA)就够了。
  运动感测的另一种应用是在医疗设备中,例如自动外部除颤器(AED)。典型地AED被设计用来产生一次震动以使病人的心脏重新跳动。当失败时,必须进行徒手心肺复苏(CPR)。一位经验不足的救助者也许没有用到足够大的力压病人胸口以获得有效CPR。在AED接触胸部的垫子内嵌入加速计,就可通过测量垫子移动的距离来告诉救助者适当压力的大小。
  震动感测用于监控和节能
  震动的轻微变化可以用于了解轴承磨损、机械部件未对准以及包括工业设备在内的其它机械问题。具有很高带宽的小型MEMS加速计是监控马达、风扇和压缩机内震动的理想产品。如果能够进行预测性的维护,可以使制造厂商避免损坏昂贵的设备,以及避免那些可能导致降低生产效率的代价高昂的故障。
  测量设备的震动变化也可用于检测机械是否被设置在高能效的工作方式。如果不加以校正,低能效的运转可能会损害公司的绿色制造计划,使得电费飙升,甚至最终还会导致设备损坏。
    冲击感测用于手势识别及更多其它应用
  在许多笔记本电脑中都能看到的磁盘驱动器保护装置是目前众多冲击感测应用中使用最广泛的一种。加速计检测微小的g力,从而判别出笔记本是放下还是跌落,g力的变化是冲击事件的发生前兆,其后果可能就是笔记本撞向地板。在检测到跌落状态后的数毫秒之内,系统指示硬盘读写头归位。在撞击期间,读写头的归位能中止与磁盘的接触,从而预防硬盘损坏和避免数据损失。
  手势识别接口是这种类型惯性感测的一种有大好前景的新应用。采用预先定义的手势(例如点击/双击或晃动),用户可以激活不同功能或调整工作模式。手势识别使那些物理按钮和开关难以操作的设备更便于使用。无按钮设计能减少总的系统成本,还能提高终端产品的耐用性,如水下照相机,如果采用物理按钮会导致水从按钮周围缝隙渗入照相机机身。
  小外形消费电子产品只是基于加速计的手势识别技术能大显身手的一种应用领域。由于MEMS加速计极小的尺寸和低功率,利用MEMS加速计的点击接口能够成为穿戴式和可植入医疗设备(如药物传输泵和助听器)的绝佳选择。
  倾斜感测用于高精度应用
  倾斜感测在手势识别接口应用领域也有巨大潜力。例如,在建筑或工业检查设备等应用中,也许人们更倾向于单手操作。另一只没有操作设备的手可以腾出来控制桶或操作员站立的平台,或者出于安全考虑抓住绳索。操作员可以简单旋转探针或设备来调整它的设置。
  在这种情况下,3轴加速计可以像感测倾斜度那样感测出“旋转度”:在存在重力的状态下测量倾斜的低速变化、检测重力矢量的变化,以及确定方向是顺时针还是逆时针。倾斜检测也可以与点击(冲击)识别结合使用,以便操作员能以单手控制设备的更多功能。
  设备的位置补偿是倾斜测量的另一重大应用领域。以GPS(全球定位系统)或移动电话中的电子指南针为例,有一个众所周知的难题就是当指南针的放置没有与地球表面平行时,会得到错误指向。
  工业称是另一个例子。在这种应用中,必须计算一个装有东西的桶相对地球的倾斜度以便精确得出重量。压力(例如用于汽车和工业机械中)同样受重力作用的影响,这些传感器包含偏移变化取决于传感器安装位置的膜片。在所有这些情况下,MEMS加速计执行必要的倾斜度感测,以便进行误差补偿。
  旋转感测用于陀螺仪和IMU
  我们已经认识到,当旋转和其它惯性感测形式结合使用时,MEMS技术的实际应用有更多优势。事实上,这要求使用加速计和陀螺仪。
  惯性测量单元包括多轴加速计和多轴陀螺仪,为了进一步增加方向精度还包括多轴磁力计。IMU还可以额外提供完整的6自由度(6DoF)。这给应用带来极其精密的分辨率,例如医疗成像设备、外科仪器、先进的弥补术和工业车辆的自动引导。除高度精确的操作之外,选择IMU的另一好处是它的多项功能可由传感器制造商预测试和预校准。
  IMU在那些对精度要求也许不是那么明显的应用中也有用武之地。其中一个例子是智能高尔夫球杆,能通过跟踪和记录每次挥杆运动以便帮助提升该球杆使用者的技术。在挥杆过程中,球杆内的加速计测量加速度和挥杆平面,同时陀螺仪测量回旋(或打高尔夫球的人的手的旋转度)。高尔夫球杆记录每次比赛或练习中收集到的数据,用于稍后在PC上进行分析。
  信号处理的新浪潮
  无论是用户友好型特性需求、功耗最小化需求,还是为消除物理按钮和控件、补偿重力和位置的需求,或者为实现更智能的操作,利用5种运动感测方法的MEMS惯性感测技术总是能提供大量的各种选择。
  ADI作为创新技术的领导者,利用其iMEMS Motion Signal Processing系列技术为下一波的信号处理应用提供了先进的加速计和陀螺仪产品。运动感测应用的扩展将得益于这些IC解决方案所提供的小尺寸、高分辨率、低功耗、高可靠性等性能,以及其上的信号调理电路和集成功能等特性。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:14:55
23楼

MEMS压力传感器及其应用

导读: MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。 

MEMS微机电系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信电源于一体的微型机电系统。

  MEMS压力传感器可以用类似集成电路IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。
  MEMS压力传感器原理
  目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机电传感器。


  

  硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。

  

  MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2的电阻应变片电桥电路。当外面的压力经引压腔进入传感器应力杯中,应力硅薄膜会因受外力作用而微微向上鼓起,发生弹性变形,四个电阻应变片因此而发生电阻变化,破坏原先的惠斯顿电桥电路平衡,产生电桥输出与压力成正比的电压信号。图4是封装如IC的硅压阻式压力传感器实物照片。

  

  电容式压力传感器利用MEMS技术在硅片上制造出横隔栅状,上下二根横隔栅成为一组电容式压力传感器,上横隔栅受压力作用向下位移,改变了上下二根横隔栅的间距,也就改变了板间电容量的大小,即△压力=△电容量(图5)。电容式压力传感器实物如图6。

  

MEMS压力传感器的应用

  

  MEMS压力传感器广泛应用于汽车电子:如TPMS(轮胎压力监测系统)、发动机机油压力传感器、汽车刹车系统空气压力传感器、汽车发动机进气歧管压力传感器(TMAP)、柴油机共轨压力传感器;消费电子,如胎压计、血压计、橱用秤、健康秤,洗衣机、洗碗机、电冰箱、微波炉、烤箱、吸尘器用压力传感器、洗衣机、饮水机、洗碗机、太阳能热水器用液位控制压力传感器;工业电子,如数字压力表、数字流量表、工业配料称重等。

  

  典型的MEMS压力传感器管芯(die)结构和电原理如图7所示,左是电原理图,即由电阻应变片组成的惠斯顿电桥,右是管芯内部结构图。典型的MEMS压力传感器管芯可以用来生产各种压力传感器产品,如图8所示。MEMS压力传感器管芯可以与仪表放大器和ADC管芯封装在一个封装内(MCM),使产品设计师很容易使用这个高度集成的产品设计最终产品。

  

  MEMS压力传感器Die的设计、生产、销售链

  

  MEMS压力传感器Die的设计、生产、销售链如图9所示。目前IC的4英寸圆晶片生产线的大多数工艺可为MEMS生产所用;但需增加双面光刻机、湿法腐蚀台和键合机三项MEMS特有工艺设备。压力传感器产品生产厂商需要增加价格不菲的标准压力检测设备。

  

  对于MEMS压力传感器生产厂家来说,开拓汽车电子、消费电子领域的销售经验和渠道是十分重要和急需的。特别是汽车电子对MEMS压力传感器的需要量近几年激增,如捷伸电子的年需求量约为200~300万个。

  

  MEMS芯片在设计、工艺、生产方面与IC的异同
  与传统IC行业注重二维静止的电路设计不同,MEMS以理论力学为基础,结合电路知识设计三维动态产品,对于在微米尺度进行机械设计会更多地依靠经验,设计开发工具(Ansys)也与传统IC(如EDA)不同,MEMS加工除使用大量传统IC工艺,还需要一些特殊工艺,如双面刻蚀,双面光刻等。MEMS较传统IC工艺简单,光刻步骤少,MEMS生产有一些非标准的特殊工艺,工艺参数需按产品要求进行调整,由于需要产品设计、工艺设计和生产三方面的密切配合,IDM的模式要优于Fabless+Foundry(无芯片生产线公司+代工厂)的模式。MEMS对封装技术的要求很高。传统半导体厂商的4英寸生产线正面临淘汰,即使用来生产LDO也只有非常低的利润,如转而生产MEMS则可获较高的利润;4英寸线上的每一个圆晶片可生产合格的MEMS压力传感器Die 5~6千个,每个出售后可获成本7~10倍的毛利(图10);转产MEMS改动工艺不大、新增辅助设备有限,投资少、效益高;MEMS芯片与IC芯片整合封装是IC技术发展的新趋势,也是传统IC厂商的新机遇。图11是MEMS在4英寸圆晶片生产线上。

  


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:15:25
24楼

MEMS陀螺仪介绍及应用

MEMS陀螺仪(MEMS Gyroscope)又名角速度计,为角惯性传感器,用于感测围绕某个轴发生的旋转,测量以度/秒为单位的角速度,不同于传统的陀螺仪用于测量角位移,角速度测量能够间接测量出角位移和速度。

陀螺仪与加速计不同的是,陀螺仪测量偏航或者斜度,与重力或线性动作无关。陀螺仪是侦测物体水平改变的状态,但无法计算物体移动的激烈程度,加速度计只能侦测物体的移动行为,但无法侦测物体角度改变的能力,如将陀螺仪和加速计结合起来,就能够感测转动与线性运动的传感器。

陀螺仪解决方案是透过一个不断旋转的陀螺,当传感器晃动时,同时改变陀螺的水平,并改变周遭的电压,而计算出物体移动的角度。

陀螺仪的MEMS内部设计,核心组件是一个经过微加工之机械组件,利用科里奥利力(Coriolis)原理把角速率转换成特定感应结构直向位移,进而取得变化量信息。其工作原理是由相互正交的振动和转动引起的交变科里奥利力,振动物体被柔软的弹性结构悬挂在基底之上。整体动力学系统是二维弹性阻尼系统,在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式。

MEMS陀螺仪广泛用于各种消费性设备,如数字相机的影像防震、笔记本电脑的硬盘保护、3D遥控器和数字罗盘等,还用在汽车的电子稳定控制(ESC)系统中,甚至自动控制系统控制机器人手脚的行动和平衡。

任天堂在2009年新推出Wii控制器游戏杆「Wii Motion Plus」,增加了MEMS陀螺仪设计,透过它侦测全方位3D角速度变化,回传游戏主机藉此判定用户运动状态,带动2009年游戏机用陀螺仪销售额成长近3倍达9400万美元。

iPhone 4为全球第一支内建MEMS陀螺仪的手机,iSuppli指出,2010年采用陀螺仪的手机仅有5款,能针对智能型手机供应陀螺仪的厂商包含意法半导体(STMicroelectronics)、 Invensense与Analog Devices等。

MEMS相关产品设计、开发皆掌握在欧美大厂手中,如意法半导体(ST)、Bosch、飞思卡尔与Invensense等,台湾相关供应链仅有晶圆代工厂台积电、联电与封测厂商菱生、日月光、硅品与硅格等。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:16:08
25楼

MEMS麦克风将取代传统麦克风

  为创造产品不同的市场区隔,提供更好的音讯品质已成为消费性电子与手机厂商的主要选择之一。传统麦克风价格固然便宜,但是在音质表现与尺寸上却已面临瓶颈。凭藉音讯品质更佳的优势,MEMS麦克风已对传统麦克风造成莫大的威胁。 
  欧胜大中华区总经理锺庆源指出,目前欧胜MEMS麦克风包含六种产品,包括类比和数位元件,并将陆续推出更多新设计。 
  以消费性电子和手机作为MEMS麦克风目标市场的欧胜(Wolfson)大中华区总经理锺庆源明确表示,MEMS麦克风将取代传统电容式麦克风(ElectretCONdenserMicrophone,ECM),目前MEMS麦克风架构包含一个转换器和一颗特定应用积体电路(ASIC),采用专属的MEMS制程技术并以特殊设计的声学元件封装。MEMS感测器的应用非常广泛,但在声学产品的应用开发中,封装是关键因素,并与MEMS麦克风的声音品质息息相关。 
  亚德诺(ADI)亚洲区微机电事业发展经理吴彦彬指出,MEMS产品制作挑战高,特别是在高音量的MEMS麦克风,举例而言,厂商常面临的问题是,即使出货量已达一百万颗,MEMS麦克风仍有许多问题尚未显露,因此对新进MEMS供应商而言,须要累积长期的经验,产品才能达到高品质、高可靠性和高容量的特色。而亚德诺的MEMS麦克风即具备高性能与更好的声音品质。预期随着MEMS麦克风成本续降,将全面取代传统麦克风。 
  面对台湾厂商挟互补式金属氧化物半导体(CMOS)与低成本优势进军MEMS麦克风市场,而欧胜本身亦为MEMS麦克风后进业者,有何因应之道,锺庆源表示,欧胜在消费性电子和智慧型手机市场的方案供应上已奠定稳固的根基,而该公司高效能MEMS方案将进一步巩固欧胜的市场地位,包括音讯中枢方案、环境噪音消除方案、喇叭放大器、类比数位转换器、数位类比转换器及电源管理元件等,再加上25年的音讯技术专业,让欧胜能为客户量身打造音讯方案,并已获许多高阶手机厂商的青睐。 
  现阶段,MEMS麦克风的架构多为MEMS感测器加上控制IC与电路,锺庆源指出,为更节省印刷电路板(PCB)空间,未来,欧胜MEMS麦克风产品也将透过单晶片整合技术,节省电路板占用空间。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:16:34
26楼

MEMS技术和基于MEMS的微流体装置

摘要:本文简要阐述了MEMS技术概念及其加工方式、特点,重点结合了MEMS和微流控芯片技术,介绍了MEMS技术在微流体领域的应用状况,选取了一种具有代表性的微隔膜泵,详细表述了此种微泵的加工工艺和过程。 
关键字:MEMS 微流体器件 硅加工 
引言 
微电子机械系统即MEMS,是Micro Electro Mechanical Systems的缩写,也可简称为微机电系统。MEMS技术的起源可追溯到20世纪60年代,1989年后MEMS一词就渐渐成为一个世界性的学术用语,MEMS技术的研究与开发也日益成为国际研究的热点。与MEMS一词同时流行的还有Micro Machine(微机械,日本)和Micro System(微系统,欧洲)。当前,常常不加区分的与MEMS通用。 
微电子机械系统(Micro-Electro-Mechanical System),是以微电子、微机械及材料科学为基础,研究、设计、制造具有特定功能的微型装置,包括微结构器件、微传感器、微执行器、微机械光学器件以及微系统等。MEMS发展的目标在于通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。 
MEMS器件具有较低的能耗与较高的效率、精度、可靠性以及灵敏性,非常适于制造微型化系统。MEMS技术是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一,将对21世纪人类的科学技术、生产方式和生活方式产生深远的影响。 
2 MEMS加工技术 
MEMS加工工艺是在传统的微电子加工工艺(也称集成电路IC工艺)基础上发展起来的,后又发展了一些适合制作微机械的独特技术,这些独特技术和常规集成电路工艺相结合实现了MEMS。这些技术统称为微机械加工技术。按照技术发展的来源分,MEMS加工技术分为三种: 
一、以美国为代表的以集成电路加工技术为基础的硅基微加工技术; 
二、以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA(Lithograph galvanfomung und abformug)技术;
三、以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工、激光加工等。 
按照加工的基底材料分,微机械加工工艺分为硅基加工和非硅基加工。 
硅基加工技术比较成熟,硅的力学性能较好,适合做微型机械。硅基工艺包括表面光刻技术、体加工技术、表面加工技术、LIGA技术、晶片键合技术和非传统硅MEMS加工技术。这些微机械加工工艺相互补充,各有所长。形成了一套比较完善的加工体系,为微电子机械系统的研究与开发奠定了坚实的物质基础。 
3 MEMS与微流控芯片技术 
近来人们对于MEMS的研究很大的注意力转移到了微流控芯片上。微流控芯片是把化学和生物等领域中所涉及的样品制备、反应、分离、检测及细胞培养、分选、裂解等基本操作单元集成或基本集成到一块几平方厘米(甚至更小)的芯片上,由微通道形成网络,以控制微流体贯穿整个系统,用以取代常规化学或生物实验室的各种功能的一种技术平台。微流控芯片的基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。[1] 
  微流控芯片包含了一系列的子系统,如图1所示。总的来说通过一个微流体网络通道,把输入的流体或其他物质转化为所需要的输出物,当然,这其中可能会涉及到样品的分离、反应室或者是对于过程的测试设备。然而,虽然针对特定的应用会需要这些子系统的不同的组合,但是他们都会包括微流体输送、转换和驱动装置。精确并符合要求的控制、检测和引导流体对于在生物和化学领域应用微流控芯片是十分重要的。应用于微流体的MEMS器件种类繁多,应用范围也比较广,主要有MEMS微泵、MEMS微混合器、MEMS微阀、MEMS微通道、MEMS微反应器等等[2] 




图1 典型的微流控芯片系统示意图



图2 流体传输系统结构示意图


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:17:13
27楼

如何利用MEMS惯性感测技术实现应用变革

  虽然MEMS(微电子机械系统)技术被用于安全气囊和汽车压力传感器领域已有二十年左右,但却是任天堂Wii和苹果iPhone的热销使人们更广泛地了解惯性传感器的用途,这些产品使用了基于运动感测技术的用户界面。
  尽管如此,在一定程度上业界的观念仍停留在惯性传感器主要是用于终端产品检测加速度和减速度的应用。从纯粹的科学角度来看,这种说法完全正确,但这样的观点却忽略了许多MEMS加速计和陀螺仪的扩展应用,包括在医疗设备、工业设备、消费电子产品和汽车电子等领域。
  五种运动感测模式中,每一种模式都将极大地超越当前大批量MEMS的应用。这五种模式分别是:加速(包括平移运动,如位置和方向的改变),震动,冲击,倾斜,旋转。
  例如,一个带运动检测的加速计在设备没有受到外界移动或震动时将其界定为非激活状态,并指示设备进入最低功耗模式,从而实现功率管理。复杂的控制机构和物理按钮被手势识别接口替代,而它是通过手指点击来控制。在其它使用案例中,终端产品的操作变得更精确,例如,对用户手中的指南针进行倾斜角度补偿。
  本文介绍了一些应用案例,。分享先进的商业化MEMS加速计和陀螺仪通过5种类型的运动感测来改变众多不同范围的终端产品的方法。
  运动感测和MEMS介绍
  加速、震动、冲击、倾斜和旋转——除了旋转外,其它四种运动实事上都是加速度在不同时间段的表现。然而,我们人类是无法靠直觉来做出运动状态的判断,例如震动是加速还是减速。分别地考虑每一种模式可以帮助我们想出更多可能的应用。
  加速度(包括平移运动)是测量在单位时间内的速度变化。速度以米/秒(m/s)来表示,并且同时包括位移速率和运动方向。因此,加速度就以米/秒2(m/s2)来表示。加速度有时候会是负值——如司机踩刹车时车速变慢,这时也被称作减速度。
  现在来考虑加速度在不同时间段的表现。震动可被认为是迅速且周期性发生的加速和减速运动。类似的,冲击则是瞬间发生的加速,但是不同于震动,。冲击是一种非周期性运动,一般只发生一次。
  我们把时间再延长一些。当对象被移动而改变倾斜度或偏角时,与重力相关的一些位置变化被牵扯进来。与震动和冲击相比,倾斜运动的发生往往相当缓慢。
  由于前四种模式的运动感测各自都与加速度有某种关系,它们可通过“g力”(地球引力)来测量,g是万有引力对地球上物体产生的单位力(1g等于9.8m/s2。)。MEMS加速计通过测量重力对加速计轴的作用力来检测倾斜度。以3轴加速计为例,三个不同的输出分别测量运动的X、Y和Z轴加速度。
  时下占市场最大份额的加速计使用差分电容测量g力,接着g力被转换成电压或数据位(数字输出加速计应用),最后被传递到微处理器上以便执行某种行为。。近来在技术上取得的进步,使业界能制造出低g和高g感测范围的微型MEMS加速计,且比以往产品的带宽更高,从而大大增加了潜在应用领域。低g感测范围是指低于20g,这可以涉及到人类能产生的运动。高g则用于感测与机器或交通工具有关的运动—也就是人类没法产生的运动。
  以上我们讨论的仅是线性速率运动,运动类型包括加速、震动、冲击和倾斜。旋转则是一种角速率运动的测量,它不同于其它运动模式,这是因为旋转运动可能不伴有加速度的变化。为了理解旋转的工作原理,我们想像一个3轴惯性传感器:假定传感器的X和Y轴与地球表面是平行的,Z轴指向地心。在这个位置,Z轴测得的作用力为1g,而X和Y轴则为0g。现在转动传感器使其运动仅与Z轴相关。X和Y平面在转动,继续测得0g,同时Z轴仍然为1g。
  MEMS陀螺仪被用于感测这种旋转运动。由于某些终端产品除了测量其它类型的运动外还必须测量旋转运动,陀螺仪可被集成在一个内嵌多轴陀螺仪和多轴加速计的IMU(惯性测量单元)中。
  加速感测用于功率管理
  在早期,加速度感测技术被用于检测运动和位置变化。利用MEMS加速计可以感测到设备被拿起或放下,当检测到这两种动作时就可以发出一个中断信号来自动控制电源的开和关功能。不同的功能组合可被保持在激活状态,或者被置于低功耗状态。对用户来说,这种由运动检测控制的开/关功能是受欢迎的,因为它避免了用户的重复动作。另外,它们实现了功率管理, 
能使设备在下次充电或更换电池之前有更长的使用时间。带背光LCD的智能遥控器是众多可能的应用之一。 
  另一种使用加速计来感测运动和产生中断信号的应用,则是用于军事或公共安全人员的无线通信设备。为保证通信的安全,当该设备被使用者卸下或放起来后,下次使用前必须再次进行身份认证。对便携或小外形的设计来说,上面这些应用需要采用只需要很小电流的加速度计,最多几个微安(µA)就够了。
  运动感测的另一种应用是在医疗设备中,例如自动外部除颤器(AED)。典型地AED被设计用来产生一次震动以使病人的心脏重新跳动。当失败时,必须进行徒手心肺复苏(CPR)。一位经验不足的救助者也许没有用到足够大的力压病人胸口以获得有效CPR。在AED接触胸部的垫子内嵌入加速计,就可通过测量垫子移动的距离来告诉救助者适当压力的大小。
  震动感测用于监控和节能
  震动的轻微变化可以用于了解轴承磨损、机械部件未对准以及包括工业设备在内的其它机械问题。具有很高带宽的小型MEMS加速计是监控马达、风扇和压缩机内震动的理想产品。如果能够进行预测性的维护,可以使制造厂商避免损坏昂贵的设备,以及避免那些可能导致降低生产效率的代价高昂的故障。
  测量设备的震动变化也可用于检测机械是否被设置在高能效的工作方式。如果不加以校正,低能效的运转可能会损害公司的绿色制造计划,使得电费飙升,甚至最终还会导致设备损坏。
  冲击感测用于手势识别及更多其它应用
  在许多笔记本电脑中都能看到的磁盘驱动器保护装置是目前众多冲击感测应用中使用最广泛的一种。加速计检测微小的g力,从而判别出笔记本是放下还是跌落,g力的变化是冲击事件的发生前兆,其后果可能就是笔记本撞向地板。在检测到跌落状态后的数毫秒之内,系统指示硬盘读写头归位。在撞击期间,读写头的归位能中止与磁盘的接触,从而预防硬盘损坏和避免数据损失。
  手势识别接口是这种类型惯性感测的一种有大好前景的新应用。采用预先定义的手势(例如点击/双击或晃动),用户可以激活不同功能或调整工作模式。手势识别使那些物理按钮和开关难以操作的设备更便于使用。无按钮设计能减少总的系统成本,还能提高终端产品的耐用性,如水下照相机,如果采用物理按钮会导致水从按钮周围缝隙渗入照相机机身。
  小外形消费电子产品只是基于加速计的手势识别技术能大显身手的一种应用领域。由于MEMS加速计极小的尺寸和低功率,利用MEMS加速计的点击接口能够成为穿戴式和可植入医疗设备(如药物传输泵和助听器)的绝佳选择。
  倾斜感测用于高精度应用
  倾斜感测在手势识别接口应用领域也有巨大潜力。例如,在建筑或工业检查设备等应用中,也许人们更倾向于单手操作。另一只没有操作设备的手可以腾出来控制桶或操作员站立的平台,。或者出于安全考虑抓住绳索。操作员可以简单旋转探针或设备来调整它的设置。
  在这种情况下,3轴加速计可以像感测倾斜度那样感测出“旋转度”:在存在重力的状态下测量倾斜的低速变化、检测重力矢量的变化,以及确定方向是顺时针还是逆时针。倾斜检测也可以与点击(冲击)识别结合使用,以便操作员能以单手控制设备的更多功能。
  设备的位置补偿是倾斜测量的另一重大应用领域。以GPS(全球定位系统)或移动电话中的电子指南针为例,有一个众所周知的难题就是当指南针的放置没有与地球表面平行时,会得到错误指向。
  工业称是另一个例子。在这种应用中,必须计算一个装有东西的桶相对地球的倾斜度以便精确得出重量。压力(例如用于汽车和工业机械中)同样受重力作用的影响,这些传感器包含偏移变化取决于传感器安装位置的膜片。在所有这些情况下,MEMS加速计执行必要的倾斜度感测,以便进行误差补偿。
  旋转感测用于陀螺仪和IMU
  我们已经认识到,当旋转和其它惯性感测形式结合使用时,MEMS技术的实际应用有更多优势。事实上,这要求使用加速计和陀螺仪。
  惯性测量单元包括多轴加速计和多轴陀螺仪,为了进一步增加方向精度还包括多轴磁力计。IMU还可以额外提供完整的6自由度(6DoF)。这给应用带来极其精密的分辨率,例如医疗成像设备、外科仪器、先进的弥补术和工业车辆的自动引导。除高度精确的操作之外,选择IMU的另一好处是它的多项功能可由传感器制造商预测试和预校准。
  IMU在那些对精度要求也许不是那么明显的应用中也有用武之地。其中一个例子是智能高尔夫球杆,能通过跟踪和记录每次挥杆运动以便帮助提升该球杆使用者的技术。在挥杆过程中,球杆内的加速计测量加速度和挥杆平面,同时陀螺仪测量回旋(或打高尔夫球的人的手的旋转度)。高尔夫球杆记录每次比赛或练习中收集到的数据,用于稍后在PC上进行分析。
  信号处理的新浪潮
  无论是用户友好型特性需求、功耗最小化需求,还是为消除物理按钮和控件、补偿重力和位置的需求,或者为实现更智能的操作,利用5种运动感测方法的MEMS惯性感测技术总是能提供大量的各种选择。
  ADI作为创新技术的领导者,利用其iMEMS Motion Signal 系列技术为下一波的信号处理应用提供了先进的加速计和陀螺仪产品。Processing运动感测应用的扩展将得益于这些IC解决方案所提供的小尺寸、高分辨率、低功耗、高可靠性等性能,以及其上的信号调理电路和集成功能等特性。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:17:33
28楼

MEMS将在未来智慧城市中发挥重要

水、电、气、热供应实现自动计费和收费;火灾、有害气体泄漏实时接收警报;在游戏世界的网球赛场上自如控制手柄,近日,在嘉定举行的物联网与MEMS(微电子机械系统)应用论坛上,各类物联网等智能化技术的综合应用方式充分展现,为未来的生活营造出一座“智慧城市”。

基本建成无线宽带网络条件的嘉定新城,在论坛上提出物联网技术产业化,聚焦“智慧社区”、“智能环境监测”、“智能监控”与生活息息相关的三方面。

据了解,在嘉定新城中心区新建社区内,将利用无线传感器等技术将红外、烟雾等传感器技术嵌入到各种监控设备和物体中,形成监控系统对小区的无缝隙覆盖,以火灾为例,如果将一栋住宅楼看作一个人体,当有火苗燃烧到人的脚,灼烧的疼痛必定上传至神经末梢。同样,在住宅楼的各个角落嵌入烟雾传感器,让其担当“知觉”重任,在每家每户安装终端接收器上就可第一时间知晓,有突发情况,做出反应及时逃生。

又如,以太阳能为能源供给、以无线为通讯方式,在新城中心区部署水位传感器、噪声传感器或是电磁辐射传感器装置,传感器单元在收集到环境质量相关数据后定时定点向控制中心传送,就可对空气、水环境、噪声、辐射四大城市环境问题进行实时监测。记者在采访中发现,现有的传感器、数据收集、终端接收等多项技术已相当成熟,但都只零散应用于生活的某个方面,如今在物联网概念的推动下,老技术得以新应用,其有效结合又各司其职,形成一条感知、传导、控制的“智慧链”,打造全新的物联网生活。

同样,微电子机械系统也将在未来智慧城市中发挥作用。如手机的屏幕界面可随着拿捏方向的改变适时旋转画面;游戏反恐精英实现3D视觉效果,画面360度呈现在你的眼睛里。据了解,这些普及应用微电子机械系统技术的电子商品还只属其低端应用项目,在生物医疗上正在研发的新技术有望让盲人重见光明。国家“863”计划微电子机械系统项目专家组成员孙立宁教授介绍,简单地说,是在眼眶里装上一个“摄像机”以充当眼球的功能,记录捕捉眼前的画面,“摄像机”里所用的微电子机械系统将视觉信息转化为神经信息,传送大脑形成影像反应,效果一如人眼。目前该研究试验在动物眼睛已成功让其见到模糊的光线,而这一项高端应用项目将是未来十年的致力目标。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:18:02
29楼

汽车MEMS传感器市场规模将创新纪录

    ISuppli表示,2010年汽车MEMS传感器市场规模将达纪录高位,但2011年市场增速将放慢。
    综合媒体11月24日报道,市场研究公司iSuppli表示,2010年汽车微电机械系统(MEMS)传感器出货量将达到6.623亿件,较上年锐增32%,市场规模将达到纪录高位,得益于汽车生产快速复苏以及汽车传感器部件供应商重建库存。
    据iSuppli的数据研究显示,预计年底时的水平(包括补充2009年经济衰退时耗尽的库存)将超过2007年6.4亿件的危机前最高水平。
    但iSuppli表示,预计2011年市场增速将放慢,出货量可能仅增长7.3%,因为市场在经历2010年的繁荣后将恢复常态;2020年产量将再次走高。
    ISuppli称,推动汽车MEMS传感器市场发展的一个重要因素是,为了支持电子稳定控制系统和轮胎压力监测系统等规定的安全技术,传感器在乘用车中得到广泛应用。 


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:18:42
30楼

消费性MEMS陀螺仪战火引爆

不让意法半导体(ST)与应美盛(Inven Sense)专美于前,包括Kionix与VTI等加速度计(Accelerometer)供货商亦纷纷推出消费性微机电系统(MEMS)陀螺仪(Gyroscope),抢进苹果(Apple) iPhone4所掀起的陀螺仪商机热潮,让市场战况更形激烈。 
    Kionix营销总监Ed Brachocki表示,消费性MEMS陀螺仪市场才刚起飞,是该公司抢进的绝佳时机。 
    Kionix营销总监EdBrachocki表示,尽管意法半导体与应美盛已抢得市场先机,但消费性陀螺仪市场才正扬帆待发,成长潜力依旧十足,因此对Kionix而言仍大有可为,而此次所发布的两款新陀螺仪方案,将可延续该公司在加速度计市场的竞争力,在竞争激烈的消费性陀螺仪市场中脱颖而出,跻身重要供货商之列。 
    事实上,Kionix早在2003年即已推出首款MEMS陀螺仪方案,主要锁定汽车及其他商用市场。而此次推出的陀螺仪产品系针对消费性电子应用所设计,在功耗及尺寸表现上均大幅提升。Brachocki强调,新一代的陀螺仪在功耗、噪声与温度稳定性等方面均展现优异的效能,在消费性陀螺仪同级产品中表现出色,突显该公司对相关技术深厚的掌握度。 
    Kionix此次共发布两款陀螺仪,分别为两轴及三轴的方案,均采用5毫米×5毫米×0.9毫米、二十四支接脚的基板栅格数组(LGA)封装,并拥有使用者定义带宽和内嵌温度传感器等功能。在测量范围为±2,048°/sec时具有16位数字输出功能;而在±128°/sec、±256°/sec、±512°/sec、±1,024°/sec和±2,048°/sec等使用者可选范围内,则可进行模拟输出。 
    除Kionix外,一向专注于汽车、工业及医疗等高精准度动作感测应用市场的VTI,日前也在德国慕尼黑电子展(Electronica2010)展中,推出静态功耗仅5毫安且数字输出的三轴陀螺仪,同样也锁定消费性陀螺仪应用市场。 
    另一方面,台湾业者利顺精密在今年上半年成功推出三轴加速度计后,也已快马加鞭投入消费性陀螺仪的研发,目前MEMS动件已完成验证,且搭配的特定应用集成电路(ASIC)也已完成电路设计,预计2011年1月投产(TapeOut),若一切顺利,则可望于2011年第一季开始提供样品给特定客户进行导入设计。 
    在苹果iPhone4带动陀螺仪导入风潮后,许多新一代智能型手机,甚至iPad、GalaxyTab等平板装置(TabletDevice)都已将陀螺仪视为产品差异的重要组件。而随着后进者产品陆续到位,消费性陀螺仪市场战火也一触即发。 


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:19:04
31楼

智能隐形眼镜内嵌MEMS传感器 诊断及治疗青光眼

消费电子和便携设备MEMS器件全球市场领先供应商意法半导体,宣布为瑞士Sensimed AG公司设计的突破性平台研制一款无线MEMS传感器,这款内嵌隐形眼镜的独特传感器,可以作为该平台附加数据读出电子系统的换能器、天线和机械支撑部件。通过及早诊断和针对个人量身订制的最佳治疗方案,这个解决方案能够更有效地照顾青光眼病患。 
这个命名为SENSIMED Triggerfish的解决方案,基于一种“智能”隐形眼镜,利用一个嵌入式微型应变计连续在一段时间内(通常为24小时)监测眼睛的曲率,能够为医生提供现有的普通眼科设备无法取得的重要的病症管理数据。 

智能隐形眼镜内嵌MEMS传感器
 

青光眼是世界第二大致盲的眼疾,是一种不可逆转的渐进性眼神经疾病,最终可导致病患双眼失明。青光眼虽然不可治愈,但是如果及时诊断,并得到正确治疗,仍然可以控制病情发展。标准检验是定期到眼科医师门诊使用眼压计检测眼内压(IOP)。然而,眼压计可能无法检测到升高的眼压,特别是青光眼病患,因为眼压在一天中变化无常,通常在睡眠或门诊以外的时间达到峰值,常常只有当眼神经受到很大损伤后,才诊断出病情。因为没有得到及时治疗,很多青光眼病患的病情不断恶化。 

Sensimed创新的解决方案由两个部件组成:智能隐形眼镜和配戴在病患颈部的小接收器。除应变计外,隐形眼镜片还内嵌天线、微型专用处理电路和向接收器发送测量数据的射频发射器。隐形眼镜的电能来自收到的无线电波,因此无需连接电池。内嵌组件在镜片上的布局巧妙,不会干扰病患的视野。隐形眼镜片由眼科医生给病患装配,当病患次日复诊时,眼科医生卸下眼镜和接收器,即可读出在过去24小时内记录的完整的IOP变化数据。 

青光眼病患佩戴智能隐形眼镜
 

Sensimed首席执行官Jean-Marc Wismer表示:“试用证明我们独特的平台为青光眼治疗带来巨大好处,下一步是在选定的地区向更多的医疗中心推广这个产品。意法半导体在高精度MEMS 传感器研制方面业绩斐然,又已经具备与创新型合作伙伴合作的完整能力,自然是关键阶段的首选合作伙伴。” 

SENSIMED Triggerfish已取得CE标志, 目前正在进行大规模试用,而且在指定医疗中心已有产品供商业销售。“这个设备简单易用,可以极大地简化并改进病人护理方式。”在瑞士日内瓦大学医院试用 Triggerfish的 Kaweh Mansouri博士表示。 

意法半导体工程师正在与Sensimed合作,把这项突破性的技术转化成可靠的量产MEMS商品。意法半导体预计2010年第二季度完成MEMS传感器的开发设计,2010年第三季度投入量产。须经过相关法规的批准,才能向试用中心之外的其他医生和病患推广。Sensimed和意法半导体预计从2010年第三季度起,在欧洲各国推出,并于2011年底进军美国市场。 

意法半导体MEMS、传感器和高性能模拟产品部总经理Benedetto Vigna表示:“意法半导体特别专注为诊断和其它医疗设备研制无线传感器网络,这款人体配戴的自供电无线传感器用于创新的产品,有望救治数百万潜在的以及现有的青光眼病患群体。Sensimed富有创新力的应用完美地证明意法半导体如何与保健专家合作,融合两种完全不同的学科和技能,利用我们的制造基础设施,提高人民的健康水平和福祉。” 


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:19:27
32楼

智能手机带动MEMS传感器市场

    智能手机应用软件日益庞大的生态系统很大程度上要归功于MEMS传感器。事实上,由于智能手机永远在线的互联网访问和传感器技术的不断发展,智能手机正在快速变成地球上最大的无线传感器网络。 
    “手机天生就是一个传感器,即使是麦克风也能从背景或交通噪声透露你所处的环境情况。通过使用传感器融合,你可以从包括环境光线传感器在内的所有传感器上获得信息,并创建以前从未想到的应用软件。”iSuppli公司分析师JérémieBouchard表示。 
    移动手机中的MEMS传感器不仅能让用户对应用软件着迷,而且今后还能用来监视星球脉冲信号。“由于移动手机中使用了MEMS传感器,使得我们如今能以更加高效的方式与世界发生交互,而不仅只是让人感到惊叹。”MEMSIndustryGroup(MIG)公司管理总监KarenLightman表示,“在整个世界范围内,MEMS传感器正在不断提高使用这些传感器的人们的生活质量。” 
    “今天,互联网只是一个可以寻找信息和执行计算的大脑,但传感器能使这个大脑意识到周围事物。”惠普实验室高级研究员、惠普超灵敏加速度计开发人员PeterHartwell指出,“我们正在给地球增加中央神经系统,它能帮助我们获得我们需要的信息,以便正确理解人类带来的影响。” 
    苹果公司已经开始革命性创举,在iPhone手机中配备了加速度计,可以使显示器从纵向显示自动变成横向显示。竞争对手也迅速跟进。现在苹果有大量创新的应用软件用到iPhone的加速度计,包括游戏、健康护理、体育训练以及大量开发人员殚精竭虑想出的无数其它应用。 
    加速度计响应用户运动的能力可以将以前平淡无奇的操作(如手工滚动)转换成类似游戏中的体验(如通过倾斜实现滚动),从而充分激发用户对移动手机的使用激情。在前代智能手机中增加加速度计的竞赛如今已经变成增加MEMS陀螺仪的竞赛,明年的设计还可能增加大气压力、温度和湿度传感器。 
    “由于智能手机中所有传感器的加入,智能手机正变得越来越聪明。仅仅拥有互联网连接并不能使你的手机聪明起来。”Invensense公司创始人SeveNasiri表示。该公司去年向市场推出了首款三轴陀螺仪。 
    Invensense将其陀螺仪卖给了苹果。这家OEM商从更大的供应商意法微电子公司购买产品。Invensense公司计划在今年晚些时候进行IPO,并声称有许多设计赢得了Android手机制造商的定单,同时预测采用陀螺仪的Android手机将在今年底前推向市场。 
    “目前有两大阵营:苹果阵营和Android阵营。”Nasiri表示,“苹果有强大的能力在iPhone手机中增加新的传感器,因为有大量开发人员正在开发使用这些传感器的应用软件。其它智能手机供应商对此一直非常羡慕,但无法超越苹果的应用软件商店。 
    “Android想凭借作为苹果竞争对手的应用软件商店(Android市场)攻克游戏领域。现在,Android手机制造商不必考虑下一个杀手级应用。他们只需增加传感器,应用软件商店就会找到使用这些传感器的最佳方式。” 
    MIG的Lightman表示,“我相信,如果没有MEMS传感器,就不会存在应用软件商店现象。” 
    这个市场非常巨大。随着一些MEMS传感器的价格下降至不到1美元,每家智能手机供应商都在想方设法填补苹果传感器的空白。因此针对MEMS传感器的移动设备市场将非常繁荣,iSuppli公司的Bouchard认为。他甚至预测,明年手机中的MEMS芯片将从2010年的8.21亿美元上升到10亿美元之上,到2015年这个市场将超过20亿美元。 
    创新使用智能手机传感器的首个应用是针对电源管理的内部程序,这是供应商在设备中增加加速度计后自己想出来的。例如,如果软件能够从振动推断手机放在汽车上,那么手机的Wi-Fi无线功能将被关闭,从而节省电能。或者,如果手机处于静止状态,可以通过停止持续地刷新来自GPS接收机的数据而达到节能效果。 
    虽然这些是智能功能,但它们不能充分利用来自无数正在使用的其它智能手机的信息。能够通过使用其它手机的数据而扩展传感器范围的应用软件将是下一波发展潮流。 
    “目前有两种全球性部署的无线传感器网络。”意法微电子公司MEMS业务部总监BenedettoVigna表示,“第一种网络部署在所有带MEMS传感器的移动设备中,包括手机、上网本、笔记本电脑和像智能数码相机等其它手持设备。第二种网络部署是固定位置的特殊传感器节点,这些节点没有手机的全部功能,但同样通过无线方式连接到互联网。” 
    这种固定位置无线传感器网络正在全球范围内迅速扩散,适合从环境监视到桥梁维护到紧急事件准备等众多专门用途。惠普公司最近签署了一笔向壳牌石油公司提供超灵敏加速度计的交易,这些加速度计用于实现能够探明新石油储量的无线地震成像系统。另外,全球智能公用事业计量系统也在他们的无线节点中增加MEMS传感器。 
    举例来说,日本正在用加速度计升级全国范围内的无线煤气表网络,专门用于地震监测。 
    “日本总有某类(地震)监测网络,因为当地的地震非常频繁。但在用加速度计改装他们的无线煤气表后,他们将拥有一个改进的网络,其中每个节点是固定的,并且在已知的位置,因此不同于装在人们口袋中随处移动的手机发出的加速度数据。”ADI公司高级应用工程师HarveyWeinberg表示。 
    然而,固定位置的无线网络不能跟踪实时人口分布情况,而智能手机传感器密度将随用户分布情况而变动。因此基于智能手机的无线传感器网络能够用来监视空气质量,还能成为在拥挤的体育场中检测有毒气体的更高分辨率网络。 
    在美国,应用软件开发人员正在集中开发地震监视软件。由斯坦福大学赞助的地震捕捉网络(QCN)要求成员自愿提供由他们的互联网连接设备(大部分是笔记本和台式电脑)中的加速度计产生的数据用于加速地震监测。地震捕捉网络激发了另一个由加州理工学院赞助的类似项目,称为公共地震网络,旨在增加来自智能手机中的加速度计产生的数据。 
    目前而言,这些项目能够满足记录地震活动的要求。
但由于地震活动是从一个点向四周幅射出去,因此最终这些项目将试图足够快地检测震中位置,再通过呼叫震中附近人们的电话,给他们提供长达60秒的警告。 
    其它应用将使用手机产生的数据提供重要程度较低但同样实用的服务。“有许多应用软件可以使用由手机产生的数据流。只是知道人们在哪里就能实现难以置信地强大功能。”Weinberg表示,“如果有许多人在公交站台等车,也许可以往这条线路增派一辆公交车;或者有许多人在商店里(正在排队等待的顾客手机中发出的数据也许能提示这一点),表明在收银台需要更多的职员。” 
    目前已有应用软件能帮助医生远程诊断病人,将手机传感器用作诊断设备。一个被称为3GDoctor的服务可以让病人通过3G视频电话连接咨询医生。自动化助手可以收集病史和症状信息,比如伤口图像或咳嗽的声音样本。医生在远程评估这些信息,也许通过短信形式向病人询问一些问题,或请求更多的图像或声音,然后呼叫相关人员一起讨论诊断结果,并使用装有前后摄像机的视频电话面对面功能推荐治疗方案。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:19:50
33楼

MEMS促进传感器由传统型向新型转变

  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器。。 
  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化、网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。 
  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。 
  多传感器数据融合技术正在形成热点,它形成于20世纪80年代,它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。
  多传感器数据融合是指把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。 
  我国传感器产业要适应技术潮流,向国内外两个市场相结合的国际化方向发展,让传感器和检测仪表抓住信息化的发展机遇。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:20:15
34楼

MEMS开关

MEMS开关就是MEMS技术的具体应用。顾名思义,开关就是来控制电路通断状况的,高效、快速反应、准确、重复使用频率、高可靠性是现代电路系统对开关的特殊要求。MEMS开关的研究始于1979年IBM的K.E.Peterson,随后经过了二十几年的发展,由于薄膜的柔软和变形,MEMS开关始终没有取得人们预期的成绩。随着通讯频率的不断增高,现有的半导体开关因不能满足频率的升高而失去开关能力。MEMS开关的出现为高科技电路系统的发展提供了有力的保障,他在各个领域的电路控制方面有广泛的应用。

MEMS开关-技术

MEMS(Micro Electro Mechanical Systems,微电子机械系统)始于20世纪60年代,加利福尼亚和贝尔实验室开发出微型硅压力传感器,70年代开发出硅片色谱仪、微型继电器。70~80 年代利用微机械技术制作出多种微小尺寸的机械零部件。1988年UC-Muller小组制作了硅静电马达,1989年NSF召开研讨会,提出了“微电子技术应用于电(子)机系统”。微电子机械系统(MEMS)技术是建立在微米/纳米技术基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。他可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。他用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。微电子机械系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生革命性的影响,他涉及机械、电子、化学、物理、光学、生物、材料等多学科。

技术的基本特点主要包括: 
尺寸在毫米到微米范围内; 
基于硅微加工技术制造; 
与微电子芯片类同,可以批量、低成本生产; 
MEMS机械一体化代表一切具有能量转化、传输等功能的效应:包括力、热、声、光、磁乃至化学、生物等; 
MEMS 目标是具有智能化的微系统。 
目前对MEMS 的需求产业主要来自于汽车工业、通信网络信息业、军事装备应用、生物医学工程;而按专业MEMS 分4大类:传感MEMS技术、生物MEMS技术、光学MEMS技术、射频MEMS技术。

MEMS开关-特点

在MEMS开关发明之前,高频转换都是由发明于20世纪70年代的机械式或者干簧继电器来完成的。最近十年,MEMS技术取得了飞速发展,出现了一大批新型传感器、微机械、微结构和控制元件,有些器件和结构已实现了商业化,而有些即将被推入市场。MEMS技术提高了转换效率,最早的MEMS开关是Petersen于1979年研制的0.35 μm厚、金属包覆的静电悬臂梁开关。但由于制作工艺的限制,此后的十年里MEMS开关没有取得太大的进展。直到20世纪90年代,MEMS开关才获得了巨大发展。1991年,Larson制作了旋转传输线式开关。1995年,Yao采用表面微加工工艺制作悬臂梁开关。1996年,Goldsmith研制出低阈值电压的膜开关。为了降低开关的阈值电压,提高开关的开态稳定性和能量处理能力,1998年Pachero设计了螺旋型悬臂式和大激励极板的MEMS开关结构。

开关是微波信号变换的关键元件。和传统的P-I-N二极管开关及FET 开关相比,由于消除了P-N结和金属半导体结,

MEMS开关具有以下优点:
(1) 减小了欧姆接触中的接触电阻和扩散电阻,显著地降低了器件的欧姆损耗,高电导率金属膜能以极低的损耗传输微波信号; 
(2) 消除了由于半导体结引起的I-V非线性,显著减小了开关的谐波分量和互调分量,并且提高了RF MEMS开关的能量处理能力; 
(3) RF MEMS开关静电驱动仅需极低的瞬态能量,其典型值大约是10 nJ。当然,MEMS开关微秒级的开关速度使他们无法应用于高速领域。

由于没有非线性,减少了开关谐波分量,提高了开关处理能力。因此,MEMS开关线性度佳、隔离度高;驱动功耗低;工作频带宽,截止频率高(一般大于1 000 GHz)。MEMS开关主要采用静电驱动,从其在电路中的应用,可分成金属-金属接触的电阻接触串联开关和金属-绝缘-金属接触的电容耦合并联开关。

相对于其他的MEMS器件及系统研究,射频微电子机械系统(RF MEMS)是近年出现的新研究领域,所谓RF MEMS就是利用MEMS技术制作各种用于无线通讯的射频器件或系统。RF MEMS包括应用于无线通讯领域的各种无源器件如:高Q值谐振器、滤波器、RF MEMS开关、微型天线以及电感、电容等。

MEMS开关-发展及现状

给出了传统半导体开关和近二十多年开发出来的MEMS开关的比较,现在在高频通讯中大量使用的就是PIN和FET半导体开关,对于这种现有的半导体开关,从表中比较可以看出,随着频率的不断升高,其开关特性越来越低。如FET开关,40~100 GHz频率段,几乎失去了开关作用。PIN二极管开关也发生类似的劣化。

与此相反,有实质性狭缝和金属接点的MEMS开关却能通过实质性金属接点的开合,在高频段维持很高的绝缘指标。这就是机械式开关在高频通讯中复活并被人们寄予厚望的原因。并且,狭缝机距离的增高,开关的高频绝缘还可设计得更高。

在日本,欧姆龙公司首先开发上市MEMS开关产品,随后有日本村田制作所,松下网络开发本部及日本三菱电机公司都相继开发了高频RF MEMS的开关。中国在MEMS方面也进行了大量的工作,对悬臂式RF MEMS开关进行了设计和研制。对RF MEMS开关驱动电压进行了分析和研究。

MEMS开关制造商TeraVicta Technologies公司将推出号称世界上最快的MEMS开关。这种265 GHz的单极双掷开关尺寸为325×45×125 mm,适用于数字电视、卫星通信和定向雷达等领域。在此之前,该公司曾在去年推出7 GHz的MEMS开关,用于自动测试设备(ATE)和RF无线领域。

MEMS是使用半导体技术制作三维结构的细微可动元件的技术。Above IC中在CMOS LSI上嵌入有基于MEMS的RF开关,该公司打算将Above IC配备到手机等便携终端上使用,目的是提高手机的基本性能,其中包括通话时间的延长等。意法合资的意法半导体(STMicroelec-tronics,ST)目前发表了运用基于MEMS的“Above IC”技术试制成功的RF开关样品。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:20:36
35楼

MEMS在军事领域的应用

军事领域是MEMS技术的最早应用点,对推动MEMS技术的进步起到了很大作用 
    用于武器制导和个人导航的惯性导航组合 
    用于超小型、超低功率无线通讯(RF 微米/纳米和微系统)的机电信号处理 
    用于军需跟踪、环境监控、安全勘察和无人值守分布式传感器 
    用于小型分析仪器、推进和燃烧控制的集成流量系统 
    武器安全、保险和引信 
    用于有条件保养的嵌入式传感器和执行器 
    用于高密度、低功耗的大量数据存储器件 
    用于敌友识别系统、显示和光纤开关的集成微光学机械器件 
    用于飞机分布式空气动力学控制和自适应光学的主动的、共型表面。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:21:03
36楼

MEMS技术的应用

MEMS在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景 

    微惯性传感器及微型惯性测量组合能应用于制导、卫星控制、汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、稳定控制和玩具 
    微流量系统和微分析仪可用于微推进、伤员救护 
    MEMS系统还可以用于医疗、高密度存储和显示、光谱分析、信息采集等等 
    已经制造出尖端直径为5m的可以夹起一个红细胞的微型镊子,可以在磁场中飞行的象蝴蝶大小的飞机等 

    空间应用 
    用作运行参数测量的微加速度计已进行了地面辐照实验,正在进行飞行搭载实验 
    微陀螺、微推进和微喷管等微系统基础研究 
    通信方面 

    光通信正在向有光交换功能的全光通信网络方向发展 
    无线通信则要求增强功能(如联网等)和减小功耗。包括美国朗讯公司在内的一些公司和大学正在研究全光通信网用的微系统及无线通信用射频微系统 

    在生物医学方面,将光、机、电、液、生化等部件集成在一起,构成一个微型芯片实验室,用于临床医学检测,为医生甚至家庭提供简单、廉价、准确和快捷的检测手段 

    光显示、高密度存储、汽车、国防等微系统 


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:21:43
37楼

MEMS技术带动传感器的发展

半导体技术中的加工方法有氧化、光刻扩散沉积、平面电子工艺、各向导性腐蚀及蒸镀,溅射薄膜等,这些都已引进到传感器制造。

因而产生了各种新型传感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气敏、湿敏传感器,利用溅射薄膜工艺制造压力传感器等。精量电子市场总监陈振指出,MEMS技术肯定是传感器技术未来的主要趋势之一。基于MEMS硅微加工技术,传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。 

陈振总监表示,传感器发展的另一大特点是向着集成化、智能化方向发展。集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,它可降低成本、增加产量。而智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点,具有判断和信息处理功能,可实现多传感器多参数测量,有自诊断和自校准功能,测量数据可存取,且具有数据通信接口,能与微型计算机直接通信。把传感器、信号调节电路、单片机集成在一个芯片上形成超大规模集成化的高级智能传感器已经成为一个新的发展趋势。 

数字的还是模拟的?

模拟还是数字?在工业化测量和控制领域,依旧存在着争执。尽管问题很简单,并且有越来越多的数字化传感器产品,但仍然很难下结论。中国科学院电工研究所新能源组的副研究员李建林与中铁电气化勘测设计研究院有限公司副总工程师、高级工程师兼国际项目管理专家王术合在接受采访时也都提出了同样的问题。 

在一些控制领域的应用中,往往有很多不同的输入以及多变量的处理,这些复杂的要求只有数字电路应付得过来。然而,在另一些应用中,模拟依旧占主导地位。模拟器件设计相对简单,对应于简单的电路,特别是面对成本控制等诸多因素,模拟都是首选。 

随着传感器技术的进一步发展,传感器设备集成了越来越多的数字化电路和接口。有专家指出,“MEMS与集成电路的结合,可以使工业解决方案的设计摒弃那些需要复杂信号处理的传统技术。”而传感器提供了数字输出信号,这需要内部具备集成的电路,如ADC以及串行器。因为制造方式相同,所需材料相同,基于MEMS的传感器就更加适合数字化。 
恰似传感器“模拟与数字”的问题,依据应用的场合不同而不同,对于未来传感器的未来,该是“仁者见仁,智者见智”的问题。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:22:07
38楼

MEMS技术用于指纹识别

一款依靠超声技术的生物传感器被称为是在无线和智能卡应用领域迄今为止最薄,最持久和最准确的指纹传感器。

SonicSlide STS3000 利用了与医疗应用中相对应的技术,能实现现有指纹传感器所没有的功能。该传感器基于复合材料及陶瓷MEMS技术,不受静电影响。将聚合物与微电子机械系统结合,可以在低成本范围内实现高解析度的指纹图像。

STS3000指纹传感器
 

指纹传感器模块由两个主要组成部分,即陶瓷材料制作的MEMS压电换能器阵列,及结合硅成像电路的高级聚合物。所有组件统一集成在一个单一的35 x 14.5 x 0.25mm 的封装中,其中传感单元尺寸仅为3x 14x 0.1 mm。

关键的成像元件是一个采用陶瓷材料的MEMS压电换能器阵列。使用该陶瓷材料成型压电微柱,在电场激励下可产生机械振荡。将收集到的不同振荡转化为256 个灰度值,即形成了明暗指纹图像。

STS3000指纹传感器设计有“零插入力”互连,因此可被集成于大多数手机中。其次还集成了相关软件和设备驱动程序,能与主要的移动硬件平台,及Symbian ,微软Windows Mobile 和Android 移动操作系统兼容。


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:23:34
39楼

MEMS(微机械系统)如何实现眼动追踪?

索尼专利显示,未来PSVR或可以通过多个MEMS(微电子机械系统)投影器来实现追踪功能。这个专利对PSVR的追踪性能无疑是一个提升,但索尼目前暂时没有披露相关的计划。本文是MEMS在眼动追踪方面的相关知识,希望让帮助用户对MEMS在VR领域的应用有所了解。

  眼动追踪(Eye Tracking),是指通过测量眼睛的注视点的位置或者眼球相对头部的运动而实现对眼球运动的追踪。眼动仪是一种能够跟踪测量眼球位置及眼球运动信息的一种设备,在视觉系统、心理学、认知语言学的研究中有广泛的应用。

  一种比较常用的无创方式为视频/图像捕捉。摄像头拍摄得到眼部图片,具有一些可以提取的特征,经过某些图像处理的算法提取出这些特征参数,从而确定眼球位置,用于判定人眼注视的方向和目标,计算结果由处理器CPU反应于你所使用的VR/AR设备上。根据7invensun的介绍,眼图录像法和角膜反射法都属于该类方法。

  以下为来自7invensun对此的介绍

  眼图录像法主要是通过辨认眼球的特征如瞳孔外形、异色边缘(虹膜、虹膜边界)、近距指向光源的角膜反射来实现眼动跟踪。根据云视频的宣传,其所提到的能够读懂人“眼神意识”的视频技术,就是基于此项技术。然而虹膜识别+瞳孔运动识别虽然可以捕捉人眼的动作但是却无法检测到人眼的注视点,这才是最硬的伤!

  首先虹膜识别和瞳孔识别都是基于一个平面的,要测量注视点就必须保证头部是固定的,让眼睛同头和注视点的相对位置一致才可以。人眼作为人体最精细的器官之一,注视点转移仅需要一个微小的动作,而人类仅仅因为呼吸而造成的头部动作就足以让测量误差造成定位偏移。然后我们再退一万步讲,即使的头部是固定的,对于虹膜的识别也没那么容易,欧洲人的人眼特征较为明显,识别相对容易,但也不是一个家用普通摄像头就可以判断眼球特征的,而亚洲人瞳孔多为深褐色,人眼特征较弱,普通摄像头几乎无法捕捉。因此从云视链的眼球追踪技术的出发点来说,通过眼神就能推送出你想要的信息是不可能的了!

  角膜反射法是目前眼球追踪领域广泛认可并应用的方法,主要通过摄像头捕捉人眼特征,通过算法建立人眼二维或者三维注视点估计模型,通过算法判断人眼动作和注视点。眼球的特殊构造会形成一到多个浦肯野像,基于这种方法的眼球追踪一般定位第一浦肯野像,通过定标步骤,可以测量出处在垂直平面现实定标点表面上人眼的注视点。

  有创的手段包括在眼睛中埋置眼动测定线圈或者使用微电极描记眼动电图。眼电图(electrooculography)检测方式通过电极测量当眼球移动时的电位变化,其原理是眼球可以被考虑为偶极子。其优点是成本低,但普及型差。

  MEMS同样可以实现眼球追踪功能,下面介绍的一项MEMS eye tracking技术来自加拿大滑铁卢大学的N. Sarkar等人。

  眼睛与眼角膜具有不同的直径,这是该设计的原理基础。该方案通过采用下图所示的简单设计从而实现在尺寸、价格、功率、带宽、准确性的改进。该设计使用一束低辐射(1-10μW/cm2),红外(850nm)、发散(~ 50mrad)的光束。光束从激光源发出后射向扫描仪scanner,扫描仪scanner具有一个平面,功能类似于镜子,将入射光束反射。再由扫描仪scanner操控该光束射向眼角膜,然后从角膜表面反射(掠射角从60度到90度)到一个光电二极管。光电二极管的作用为接受光信号,产生电信号。输出电信号随输入光强增大而增大。随着眼睛的转动,扫描仪scanner控制光束追踪眼角膜上能够使光电二极管接受到最大信号的点。

  值得注意的是,其光电二极管的表面可作为一个空间滤波器,使其不需要大面积平坦的微镜。相应地,该设计使用了一个300微米大小的扫描仪(Fresnel zone plate scanner)。其支撑anchor可以实现扫描仪scanner两个自由度(蓝色支撑以及红色支撑均可旋转)的偏转,可以完成光束的较大范围操纵。

  下图为另一种同样具有两个自由度的扫描仪scanner,其工作原理与上图类似,通过支撑anchor的旋转对扫描仪进行旋转,从而操纵光束的角度。其中间载荷为垂直排列的两个cylindrical lens patterns用以投射十字准线(crosshair)。

  (进行色彩描绘后的扫描仪scanner的扫描电镜图)


研讨会宣传员_3259

  • [版主]
  • 精华:3帖
  • 求助:110帖
  • 帖子:1928帖 | 14403回
  • 年度积分:102
  • 历史总积分:64749
  • 注册:2020年3月27日
发表于:2017-02-22 20:25:39
40楼

MEMS传感器的应用场景

MEMS传感器作为获取信息的关键器件,对各种传感装置的微型化起着巨大的推动作用,已在太空卫星、运载火箭、航空航天设备、飞机、各种车辆、生特医学及消费电子产品等领域中得到了广泛的应用。

MEMS传感器典型应用如下图:

  

随着电子技术的发展,MEMS的应用领域越来越广泛,由最早的工业、军用航空应用走向普通的民用和消费市场。

在智能手机上,MEMS传感器提供在声音性能、场景切换、手势识别、方向定位、以及温度/压力/湿度传感器等广泛的应用;

在汽车上,MEMS传感器借助气囊碰撞传感器、胎压监测系统(TPMS)和车辆稳定性控制增强车辆的性能;

医疗领域,通过MEMS传感器研成功制出微型胰岛素注射泵,并使心脏搭桥移植和人工细胞组织成为现实中可实际使用的治疗方式;在可穿戴应用中,MEMS传感器可实现运动追踪、心跳速率测量等。

  

  汽车电子MEMS传感器的应用

汽车电子产业被认为是MEMS传感器的第一波应用高潮的推动者,MEMS传感器在汽车上应用的快速发展主要是受益于各国政府全面推出汽车安全规定(比如要求所有汽车采用TPMS系统)和汽车智慧化的发展趋势。

全球平均每辆汽车包含10個传感器,在高档汽车中,大约采用25至40只MEMS传感器,车越好,所用的MEMS就越多,BMW740i汽车上就有70多只MEMS。MEMS传感器可满足汽车环境苛刻、可靠性高、精度准确、成本低的要求。

其应用方向和市场需求包括车辆的防抱死系统(ABS)、电子车身稳定程序(ESP)、电控悬挂(ECS)、电动手刹(EPB)、斜坡起动辅助(HAS)、胎压监控(EPMS)、引擎防抖、车辆倾角计量和车内心跳检测等等。

  

目前,压力传感器、加速度计、陀螺仪与流量传感器四类器件合计占汽车MEMS系统的99%。

  MEMS压力传感器

MEMS压力传感器是汽车中应用最多的传感器, 至少18个汽车应用领域促进压力传感器的增长,包括:轮胎压力,电子稳定控制系统中的刹车传感器,侧面气囊,与日益严格的排放标准相关的引擎控制,大气压力与废气再循环压力。这种传感器用单晶硅作材料,以采用MEMS技术在材料中间制作成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥方式将应变电阻连接成电路,来获得高灵敏度。车用MEMS压力传感器有电容式、压阻式、差动变压器式、声表面波式等几种常见的形式。

  MEMS加速度计

MEMS加速度计的原理是基于牛顿的经典力学定律,通常由悬挂系统和检测质量组成,通过微硅质量块的偏移实现对加速度的检测,主要用于汽车安全气囊系统、防滑系统、汽车导航系统和防盗系统等,除了有电容式、压阻式以外,MEMS加速度计还有压电式、隧道电流型、谐振式和热电偶式等形式。其中,电容式MEMS加速度计具有灵敏度高、受温度影响极小等特点,是MEMS微加速度计中的主流产品。

  微陀螺仪

微陀螺仪是一种角速率传感器,主要用于汽车导航的GPS信号补偿和汽车底盘控制系统,主要有振动式、转子式等几种。应用最多的属于振动陀螺仪,它利用单晶硅或多晶硅的振动质量块在被基座带动旋转时产生的哥氏效应来感测角速度。例如汽车在转弯时,系统通过陀螺仪测量角速度来指示方向盘的转动是否到位,主动在内侧或者外侧车轮上加上适当的制动以防止汽车脱离车道,通常,它与低加速度计一起构成主动控制系统。

  MEMS流量传感器

MEMS流量传感器是基于传统的热膜片风力计原理借助先进的薄膜片技术,将性能稳定的薄膜片电阻加工到一片薄膜上。由于采用了MEMS加工,因此一方面缩短了传感器响应时间,另一方面由于采用了前后桥电路,可以判断出流体流向,从而进一步测量出回流流量。

为了防止温度变化对测量精度的影响,传感器中采用了两片热敏电阻分别对前后桥进行了温度补偿。流量传感器主要用于检测发动机的空气进气量和燃油喷射量,从而将空燃比控制在最佳值附近,此外流量传感器还广泛利用于排气再循环、防滑驱动、刹车防抱死系统以及电控悬架等许多方面。

按销售额计算,最大的五种汽车MEMS应用按降序排名是:ESC,安全气囊,进气歧管绝对压力(MAP),TPMS与翻滚探测。

  消费类电子MEMS传感器的应用

随着消费电子领域大发展及产品创新不断涌现,特别是受益于智能手机和平板电板的快速发展,消费电子已经取代汽车领域成为MEMS最大的应用市场。其中手机和平板电脑中的MEMS传感器几乎占了消费类电子MEMS传感器类市场的90%。

MEMS传感器在消费电子领域的应用包括运动/坠落检测、导航数据补偿、游戏/人机界面、电源管理、GPS增强/盲区消除、速度/距离计数等等,这些MEMS技术都在很大程度上提高了用户体验。

终端设备内的硬盘驱动器坠落保护 是MEMS运动传感器在消费电子市场的具有重要历史意义的代表性应用之一。手提电脑内的三轴加速计可以监测加速度,因为具有特定的功能和数据处理电路,它能够检测到硬盘驱动器的意外摔落事故,并及时命令读写头缩回到安全位置,以防电脑最终摔落在地板上时损坏读写头。

是MEMS在消费类产品中最大的应用领域。包含MEMS麦克风、3D加速器、RF被动与主动组件、相机稳定与GPS的陀螺仪、小型燃料电池与生化芯片等,应用最多的传感器是加速计、陀螺仪与MEMS硅麦克风,其中加速度计是该市场中第一大应用产品。而近期陀螺仪增长迅速,已经成为继加速度计后的第二大应用产品。

MEMS麦克风销售额2015年已经突破10亿美元,美国IHS全球产业研究报告表示全球MEMS麦克风市场仍将连续5年维持18%的年复合成长率(CAGR)。还有一些MEMS传感器或刚进入市场的,例如磁力计、指纹传感器、环境传感器、MEMS手机摄像头等。而MEMS传感器在手机应用的数量规模以及多样性,也仍不断在快速成长当中。

苹果(Apple)公司于2007年首度将微机电系统(MEMS)加速度计应用在iPhone中,开启手机产业的传感器革命。iPhone6 Plus就使用了加速度计、陀螺仪、电子罗盘、气压计、指纹传感器、接近与环境光传感器、MEMS麦克风和Image Sensor等MEMS传感器。截至目前为止,Apple公司已拥有超过三百五十篇以上与传感器相关的发明专利,而申请内容包括触控、影像、运动、振动感测、数据运算、掉落感知及亮度感知等等。

  

游戏机

是运动跟踪和手势识别应用的突出代表,以具有革命性的任天堂Wii游戏机为例, 采用了MEMS三轴加速度计,能够捕捉到玩家任何细微的动作,使玩家陶醉于真实的游戏体验,通过不同的动作融入到游戏中,例如,模仿一场真实的网球赛、一场引人入胜高尔夫球赛、一场紧张的拳击赛或轻松的钓鱼比赛的动作。

  

高能效低价微型MEMS传感器彻底改变了人们与移动终端设备的互动方式。在各类移动终端、游戏机、遥控器等设备上,MEMS传感器可以实现先进的功能,令人心动的用户界面,用户的手势、碰摸就能够激活相应的功能。为消费电子产品的“”升级、换代”划成一个里程碑式的注脚。

智能穿戴装置

是目前最热门的新兴产品,其所使用的感测组件,无论在尺寸、耗电量、感测灵敏度或是组件可靠度上,通常皆须面对更严苛的要求。最成功的组件案例是惯性传感器与MEMS麦克风,包括Google、Apple、微软(Microsoft)、摩托罗拉(Motorola)等多家知名大厂,皆已将此两组件整合在自家的穿戴装置产品内,成为其传感器标准配备。

智能穿戴装置两大功能项目在于量化生活(Quantified Self)及随身环境安全监测。其所需感测功能大致可包括活动感知、影像感测、环境感测及生理感测四大类别。MEMS组件在穿戴装置上的应用诉求,是使系统达到微小化、低功耗、高性能及多功能整合等目的。

健身和健康监测就是MEMS传感器在智能穿戴装置中的代表性的应用。计步表或计步器是利用三轴MEMS加速度传感器,在特定的情况下,计步器的传感器能够精确地测定在步行和跑步过程中作用在系统上的加速度,通过处理加速度数据,计步器显示用户走过的步数和速度,以及在身体运动过程中所消耗掉的热量。

  航空航天设备上MEMS传感器的应用

MEMS传感器应用在航空航天领域,要求适应在不同的空间环境,包括:真空、电磁辐射、高能粒子辐射、等离子体、微流星体、行星大气、磁场和引力场等,以及航天器某些系统工作时或在空间环境作用下产生的诱导环境,例如,轨道控制推力器点火和太阳电池翼伸展引起的振动、冲击环境;航天器上的磁性材料和电流回路在空间磁场中运动产生的感应磁场;航天器上有机材料逸出物沉积在其他部位造成的分子污染等。

因此,航空航天传感器主要有状态传感器,环境传感器之分,前者包括各种活动机件的即时位置传感器,如襟,副翼位置,喷口大小,油门位置,减速板位置,起落架收放位置等,飞机状态传感器,如迎角,侧滑角传感器,飞机姿态传感器等,各种参数如液压,油压,发动机振动量,滑油金属屑,各种消耗品如油料剩余量,消耗速度等,还有结冰传感器,火警传感器,极限传感器,过载传感器,生命传感器以及各种多余度系统的自动转换传感器。

环境传感器主要有温度传感器、湿度传感器、氧气传感器、压力传感器、流量传感器等。

MEMS传感器在航空航天领域中主要有五种用途:

①提供有关航天器的工作信息,起故障诊断的作用;

②判断各分系统间工作的协调性,验证设计方案;

③提供全系统自检所需信息,给指挥员决策提供依据;

④提供各分系统、整机内部检测参数,验证设计的正确性。

⑤监测飞行器内外部的环境,为飞行员航天员提供所需的生存条件,保障正常飞行参数。

MEMS传感器构成的电子设备

MEMS传感器在飞行器中的电子设备、飞行器设计及微小卫星等技术方面都有重要的应用。机载分布式大气数据计算机,由全压一静压一攻角为一体的多功能微型大气数据探头(或称组合式空速管)、微型压力传感器(静压、差压及动压)以及信号处理单元直接组成,并封装在壳体内,形成一个微机电系统。

MEMS惯性导航系统

微型惯性导航系统集微陀螺、微加速度计及其信号处理单元为一体,该系统以硅材料为主,用MEMS加工工艺制造而成,其体积和质量比常规惯性导航系统至少下降2一3个数量级。

采用MEMS技术制造的微型惯性测量单元(MIMU),没有转动的部件,在寿命、可靠性、成本、体积和质量等方面都要大大优于常规的惯性仪表。所生产出来的标准化的、高性能航天器姿态测量仪器性能更好,价格更便宜,而且在航空航天平台均能使用。采用MIMU器件可使装置的重量大大减轻。

MEMS加速度传感器

加速度传感器在航空航天应用在姿态航向基准系统;捷联惯性测量单元;飞机导航系统;飞行控制系统;包括颤振测试在内的飞行期间结构测试;健康系统测试;稳定性测试;地面振动测试(风洞试验);模态测试;发动机控制系统、制导系统等。

MEMS化学传感器

这种类似于电子鼻的高温传感器阵列是用于检测和控制航空和汽车发动机的排放物质。通过分析电子鼻产生的信号确定排放系统废气的成分。

MEMS压力传感器

航空航天传感器在飞行中、飞行试验、发动机测试验、结构强度试验、风洞试验,以及在设备的制造生产过程中应用十分普遍。压力测量的特点是;被测压力种类多、涉及范围广,测压点多,要求测量精度高。

航天航空集当代先进制造技术、信息技术和材料技术于一身,对传感器的要求越来越高,MEMS传感器发展方向是多功能化、小型化、智能化、集成化,随着产品可靠性进一步提高和价格降低,制作技术发展的不断成熟和完善,MEMS传感器在航空航天领域的应用将会在更广泛范围取代传统传感器。

  生物医疗行业MEMS传感器的应用

MEMS传感器技术的突破也为医疗应用带来前所未有的便利性和体验。随着人口的老龄化,人们的医疗保健问题变的空前重要。人们的医疗保健问题变的空前重要。体外诊断、药物研究、病患监测、给药方式以及植入式医疗器械等领域都在不断发展,系统集成商们需要创新的技术来迅速提高产品性能、降低产品成本、缩小产品尺寸。

  

生物MEMS技术为所有这些领域带来改进了传感和执行功能的微型器件,如加速度传感器、压力传感器、流量传感器以及微泵。

测压传感器

应用在医学中被称为医用测压传感器,它们都必须高度精确并紧凑包装,以方便携带,特别是器械要与病人直接连接时。

现在将小型测压传感器应用到容易发生人为错误的领域,如:用于给药的输液泵。这种传感器可准确测量输液袋的重量,当液体重量与预先设定值不同时,传感器会立即向连接的设备发出警告信息,并及时跟控制器通信。

测压传感器的核心部件是箔应变计,采用真空沉积或溅射技术,通过材料的分子键合附着在介电层上,这种技术通常称为薄膜法。理想的应变计应该体积小,成本低,对于负荷方向上的应变极为灵敏,而且不受周围环境温度变化的影响。

  

植入式传感器

应当体积小,重量轻,并且和身体兼容,同时还要求其功率非常小。更重要的是,它们不能随着时间的推移而衰变。

由于这类传感器属于第Ⅲ类医疗器械,因此需要有食品及药物管理局(FDA)的批准才能使用。一般来讲,这类传感器价格非常昂贵,而且需要专家做外科手术进行移植。对功率的要求是植入式传感器正常工作所面临的主要挑战之一。不需要功率就能发挥作用的传感器是最完美的。

压电聚合传感器

体积小,可靠性高,不需要外部动力而且能长时间持续工作。这类传感器可应用于监视病人活动的心脏起搏器,通过植入式传感器可以实时监测心率变化。举个例子,由于腹部长了一个大动脉瘤,要求切除一部分脆弱的动脉,用人工合成的管状器官来替代。这时,可以在手术的过程中植入一个传感器,用来监视手术部位的压力泄漏。

心脏起搏器

每当病人运动时,传感器就会产生一个信号。心脏起搏器接收到这些信号,然后使心脏也相应的博动。如果病人在休息,信号为零,则心脏起搏器会使心脏以正常频率博动,例如大约70次/分钟。传感器能区分出各种活动,例如走路、跑步、或是其他身体活动。传感器的输出和运动量成正比。

MEMS加速度传感器

提出一种无创胎心检测方法,研制出一种简单易学、直观准确的介于胎心听诊器和多普勒胎儿监护仪之间的临床诊断和孕妇自检的医疗辅助仪器。

通过加速度传感器将胎儿心率转换成模拟电压信号,经前置放大用的仪器放大器实现差值放大。然后进行滤波等一系列中间信号处理,用A/D转换器将模拟电压信号转换成数字信号。通过光隔离器件输入到单片机进行分析处理,最后输出处理结果。

基于MEMS加速度传感器设计的胎儿心率检测仪在适当改进后能够以此为终端,做一个远程胎心监护系统。医院端的中央信号采集分析监护主机给出自动分析结 果,医生对该结果进行诊断,如果有问题及时通知孕妇到医院来。该技术有利于孕妇随时检查胎儿的状况,保障胎儿和孕妇的健康。

生物传感器

对生物物质敏感并将其浓度转换为电信号进行检测,它是由固定化的生物敏感材料做识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)与适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等)及信号放大装置构成的分析工具。

在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器。生物传感器已应用于监测多种细菌、病毒及其毒素。药物分析用生物传感器的典型代表产品是 SPR生物传感器,这是一种表面膜共振分析,是实时测定生物分子结合的技术。

最常见的用于生物传感:基于抗体-抗原的相互作用,核酸相互作用, 酶的相互作用,细胞相互作用,使用仿生材料的相互作用。

随着医疗技术的发达,越来越多的医疗保健应用使用MEMS器件,并由此带来市场强劲增长!

MEMS传感器助力物联网

构建智能世界的美好生活

万物相连,智能感应。随着通讯技术的高速发展,应用MEMS传感器技术,使所有的智能对象与现实世界进行互动,推动了物联网的发展。

物联网(IoT)是把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。

从网络结构来看,物联网可分为感知层、网络层和应用层。感知层位于物联网三层结构中的最底层,是构成物联网的核心基础。传感器作为物联网三大层次结构之一的感知层的重要组成部分,将现实世界中的物理量、化学量、生物量等转化成可供处理的数字信号,是实现物联网的基础和前提。

物联网的大力推进和智能终端的广泛应用,使传感器产品需求大幅增加,并且重心逐渐转向技术含量较高的MEMS传感器领域。MEMS技术在物联网领域应用广泛,覆盖可穿戴设备、智能家居、医疗、工业4.0、智能汽车、智慧城市等多个细分领域。

人类透过一个由全球数亿人所共有共享的巨型智能网络基础建设,进行全面性的社群交流与信息分享,并且经由链接实体对象及虚拟分析整合,达到无所不在的侦测、识别、控制及服务。

在无限感测、万物互联的未来世界中,充满着各式各样的智慧技术:无人车辆会自动驾驶、让行车更安全;智慧家电提供便利舒适的生活管家及保全服务;植物工厂精准掌握作物生产过程、解决气候剧变导致的粮荒问题;

工业4.0实现安全有效率的人机协作、提升产品良率与质量;远距医疗网络带来更优质便利的医疗服务;智慧电网提升城市能源使用效益、带动经济成长、并减缓全球温室效应等。

而对于个人而言,行动及穿戴式装置则将提供无处不在的信息服务及生活照顾。另外,传统的工业应用,例如医疗、导航、军事、航空、地震勘探及制程控制等,利用MEMS感测组件技术形成新型态的工业物联网。

MEMS技术的传感器,正是以功耗低、精度高、尺寸小的技术特点,来满足万物互联的智能世界,新型MEMS传感器的开发设计和市场投入,使更具丰富多彩的物联网应用成为可能,它推动了我们的生活更加绚丽多彩。



热门招聘
相关主题

官方公众号

智造工程师