一、引言
随着工业生产自动化水平的不断加快,对控制系统提出了愈来愈严格的要求。随着大规模集成电路广泛应用,控制系统本身也得到长足发展,已由原来的分立元件、继电器控制,发展成为大规模集成电路的微机控制。控制方式也由原来的分散控制发展为集中控制。正是在这种发展的需求下,可编程
控制器 普通型温湿度
控制器WH03 应运而生。由于可编程
控制器(PLC)具有体积小、抗干扰能力强、组态灵活等优点,因而在工业控制系统中得到非常广泛的应用。
在电缆自动生产线检测控制系统中,可编程
控制器主要用作下位机,检测各状态点的状态,直接控制系统的启、停和其他控制单元的投切,并将各点的状态送给上位机——计算机,计算机综合可编程
控制器和其他设设备的数据,作出相应的处理和显示。关于整个系统的设计与实现另文介绍,本文主要介绍该系统中用作下位机的可编程
控制器的作用、与计算机的通讯及程序设计方法。
二、可编程
控制器的性能特点
用于控制系统中的可编程
控制器是以循环扫描的方式工作,它不断读取输入点的状态,然后按照既定的控制方式进行逻辑运算,将结果从输出端送出,从而达到控制的目的。它是由工业专用微型计算机、输入/ 输出继电器、保护及抗干扰隔离电路等组成的微机控制装置,具有顺序、周期性工作的特性。由于它具有可编程的功能,且其基本输入/输出点全部使用开关量,因而完全可以替代继电器控制系统和由分立元件构成的控制系统。从应用角度来看,可编程
控制器具有如下特点:
1、可靠性高:可编程
控制器的输入/ 输出端口均采用继电器或光耦合器件,即基本输入/ 输出点均为开关量,同时附加有隔离和抗干扰措施,使其具有很高的抗干扰能力,因而能在比较恶劣的环境下可靠工作。
2、体积小:在制造时采用了大规模集成电路和微处理器,用软件编程替代了硬连线,达到了小型化,便于安装。
3、通用性好:可编程
控制器采用了模式化结构,一般有CPU模块、电源模块、通讯模块、PID模块、模拟输入/ 输出模块等。用这些模块可以灵活地组成各种不同的控制系统。对不同的控制系统,只需选取不同的模块设计相应的程序即可。
4、使用方便、灵活:对于不同的控制系统,当控制对象及输入/ 输出硬件结构选定后,若要改变控制方式或对控制对象作一些改动,只需修改相应程序即可,无须对系统连线作较大的修改。从而减少了现场调试的工作量,提高了工作效率。
三、用作下位机的可编程
控制器
由于可编程
控制器具有上述特点,因而在检测和控制系统中得到广泛应用。但因其专用性太强以及受输入/ 输出节点数的限制,在由可编程
控制器构成的系统中,可编程
控制器主要用来完成组合逻辑与时序逻辑的输入/ 输出控制。另外,由于可编程
控制器无法以比较灵活的方式显示当前各个输入/ 输出点的状态,不能以多种方式提供整个系统的运行情况,因而,在用可编程
控制器构成比较大的检测控制系统时,一般用可编程
控制器完成信号的采集和控制,比较复杂的数据处理、图形显示、人机界面等由计算机来完成。
在电缆自动生产线检控系统中,可编程
控制器作为下位机用来控制各种电机、风机的启、停,调速器的投切,读取各控制点的状态,然后将各点的状态输入到上位机——计算机。计算机处理可编程
控制器和其他设备的信息,以图表的方式显示,使操作者对生产线的工作状态一目了然。计算机和可编程
控制器的硬件连接及可编程
控制器与各控制端、状态点的连接如图1所示。
图1 可编程
控制器接线示意图
图1中,输入到可编程
控制器的检测点可分为按键类和
光电开关 声光控开关MRT103-F87A / MRT103-F87B 类。按键类主要有:启动、停止、帮助、诊断、查询、复位按键等。光电开关类主要有:张力轮位置、张力杆位置、左右托位置、左右盘位置、抓勾位置、左右防护位置、排线位置、排架位置、光电开关等。可编程
控制器的输出用来控制循环水、退火水、吹干风机及各种电机的启停等。
可编程
控制器不断读取输入端,按既定的控制方式对输入端的状态进行逻辑运算,然后将运算结果经输出端输出(即进行控制),从而保证生产线的可靠、连续运行,同时将本系统的状态按某种协议反映给上位机,上位机处理可编程
控制器和其它设备的信息,作出响应,并以图表的方式显示,使操作者能随时掌握生产线的工作状态,以便在需要时进行调试。
四、通讯连接及程序设计
上位机和下位机进行数据交换的方式有很多,如网络方式、485方式、RS232方式等。由于在电缆生产线中,上、下位机之间距离较近,因而我们选用了RS232方式,其硬件连接如图2所示。
图2 可编程
控制器与计算机连接示意图
图2是我们使用三菱公司的FX2可编程