发表于:2008-08-01 13:16:27
楼主
偏光板(polarizer)
我记得在高中时的物理课,当教到跟光有关的物理特性时,做了好多的物理实验,目的是为了要证明光也是一种波动。而光波的行进方向,是与电场及磁场互相垂直的。同时光波本身的电场与磁场分量,彼此也是互相垂直的。也就是说行进方向与电场及磁场分量,彼此是两两互相平行的.(请见图7) 而偏光板的作用就像是栅栏一般,会阻隔掉与栅栏垂直的分量,只准许与栅栏平行的分量通过。所以如果我们拿起一片偏光板对着光源看,会感觉像是戴了太阳眼镜一般,光线变得较暗。但是如果把两片偏光板迭在一起,那就不一样了。当您旋转两片的偏光板的相对角度,会发现随着相对角度的不同,光线的亮度会越来越暗。当两片偏光板的栅栏角度互相垂直时,光线就完全无法通过了.(请见图8) 而液晶显示器就是利用这个特性来完成的。利用上下两片栅栏互相垂直的偏光板之间,充满液晶,再利用电场控制液晶转动,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同灰阶亮度了。(请见图9)
上下两层玻璃与配向膜(alignment film)
这上下两层玻璃主要是来夹住液晶用的。在下面的那层玻璃长有薄膜晶体管(Thin film transistor,TFT),而上面的那层玻璃则贴有彩色滤光片(Color filter)。如果您注意到的话(请见图3),这两片玻璃在接触液晶的那一面,并不是光滑的,而是有锯齿状的沟槽。这个沟槽的主要目的是希望长棒状的液晶分子,会沿着沟槽排列。如此一来,液晶分子的排列才会整齐。因为如果是光滑的平面,液晶分子的排列便会不整齐,造成光线的散射,形成漏光的现象。其实这只是理论的说明,告诉我们需要把玻璃与液晶的接触面,做好处理,以便让液晶的排列有一定的顺序。但在实际的制造过程中,并无法将玻璃作成有如此的槽状的分布,一般会在玻璃的表面上涂布一层PI(polyimide),然后再用布去做磨擦(rubbing)的动作,好让PI的表面分子不再是杂散分布,会依照固定而均一的方向排列。而这一层PI就叫做配向膜,它的功用就像图3中玻璃的凹槽一样,提供液晶分子呈均匀排列的接口条件,让液晶依照预定的顺序排列。
TN(Twisted Nematic) LCD
从图10中我们可以知道,当上下两块玻璃之间没有施加电压时,液晶的排列会依照上下两块玻璃的配向膜而定。对于TN型的液晶来说,上下的配向膜的角度差恰为90度.(请见图9) 所以液晶分子的排列由上而下会自动旋转90度,当入射的光线经过上面的偏光板时,会只剩下单方向极化的光波。通过液晶分子时,由于液晶分子总共旋转了90度,所以当光波到达下层偏光板时,光波的极化方向恰好转了90度。而下层的偏光板与上层偏光板,角度也是恰好差异90度.(请见图9) 所以光线便可以顺利的通过,但是如果我们对上下两块玻璃之间施加电压时,由于TN型液晶多为介电系数异方性为正型的液晶(ε// >ε⊥,代表着平行方向的介电系数比垂直方向的介电系数大,因此当液晶分子受电场影响时,其排列方向会倾向平行于电场方向.),所以我们从图10中便可以看到,液晶分子的排列都变成站立着的。此时通过上层偏光板的单方向的极化光波,经过液晶分子时便不会改变极化方向,因此就无法通过下层偏光板。
Normally white及normally black
所谓的NW(Normally white),是指当我们对液晶面板不施加电压时,我们所看到的面板是透光的画面,也就是亮的画面,所以才叫做normally white。而反过来,当我们对液晶面板不施加电压时,如果面板无法透光,看起来是黑色的话,就称之为NB(Normally black)。我们刚才所提到的图9及图10都是属于NW的配置,另外从图11我们可以知道,对TN型的LCD而言,位于上下玻璃的配向膜都是互相垂直的,而NB与NW的差别就只在于偏光板的相对位置不同而已。对NB来说,其上下偏光板的极性是互相平行的。所以当NB不施加电压时,光线会因为液晶将之旋转90度的极性而无法透光。为什幺会有NW与NB这两种不同的偏光板配置呢? 主要是为了不同的应用环境。一般应用于桌上型计算机或是笔记型计算机,大多为NW的配置。那是因为,如果你注意到一般计算机软件的使用环境,你会发现整个屏幕大多是亮点,也就是说计算机软件多为白底黑字的应用。既然亮着的点占大多数,使用NW当然比较方便。也因为NW的亮点不需要加电压,平均起来也会比较省电。反过来说 NB的应用环境就大多是属于显示屏为黑底的应用了。
STN(Super Twisted Nematic)型LCD
STN LCD与TN型LCD在结构上是很相似的,其主要的差别在于 TN型的LCD,其液晶分子的排列,由上到下旋转的角度总共为90度。而STN型LCD的液晶分子排列,其旋转的角度会大于180度,一般为270度.(请见图12) 正因为其旋转的角度不一样,其特性也就跟着不一样。我们从图13中TN型与STN型LCD的电压对穿透率曲线可以知道,当电压比较低时,光线的穿透率很高。电压很高时,光线的穿透率很低。所以它们是属于Normal White的偏光板配置。而电压在中间位置的时候,TN型LCD的变化曲线比较平缓,而STN型LCD的变化曲线则较为陡峭。因此在TN型的LCD中,当穿透率由90%变化到10%时,相对应的电压差就比STN型的LCD来的较大。我们前面曾提到,在液晶显示器中,是利用电压来控制灰阶的变化。而在此TN与STN的不同特性,便造成TN型的LCD,先天上它的灰阶变化就比STN型的LCD来的多。所以一般TN型的LCD多为6~8 bits的变化,也就是64~256个灰阶的变化。而STN型的LCD最多为4 bits的变化 也就只有16阶的灰阶变化。除此之外STN与TN型的LCD还有一个不一样的地方就是反应时间(response time) 一般STN型的LCD其反应时间多在100ms以上 而TN型的LCD其反应时间多为30~50ms 当所显示的影像变动快速时 对STN型的LCD而言 就容易会有残影的现象发生。
TFT LCD(Thin film transistor liquid crystal display)
TFT LCD的中文翻译名称就叫做薄膜晶体管液晶显示器,我们从一开始就提到 液晶显示器需要电压控制来产生灰阶。而利用薄膜晶体管来产生电压,以控制液晶转向的显示器,就叫做TFT LCD。从图8的切面结构图来看,在上下两层玻璃间,夹着液晶,便会形成平行板电容器,我们称之为CLC(capacitor of liquid crystal)。它的大小约为0.1pF,但是实际应用上,这个电容并无法将电压保持到下一次再更新画面资料的时候。也就是说当TFT对这个电容充好电时,它并无法将电压保持住,直到下一次TFT再对此点充电的时候.(以一般60Hz的画面更新频率,需要保持约16ms的时间.) 这样一来,电压有了变化,所显示的灰阶就会不正确。因此一般在面板的设计上,会再加一个储存电容CS(storage capacitor 大约为0.5pF),以便让充好电的电压能保持到下一次更新画面的时候。不过正确的来说,长在玻璃上的TFT本身,只是一个使用晶体管制作的开关。它主要的工作是决定LCD source driver上的电压是不是要充到这个点来。至于这个点要充到多高的电压,以便显示出怎样的灰阶。都是由外面的LCD source driver来决定的。
彩色滤光片(color filter,CF)
如果你有机会,拿着放大镜,靠近液晶显示器的话。你会发现如图9中所显示的样子。我们知道红色,蓝色以及绿色,是所谓的三原色。也就是说利用这三种颜色,便可以混合出各种不同的颜色。很多平面显示器就是利用这个原理来显示出色彩。我们把RGB三种颜色,分成独立的三个点,各自拥有不同的灰阶变化,然后把邻近的三个RGB显示的点,当作一个显示的基本单位,也就是pixel。那这一个pixel,就可以拥有不同的色彩变化了。然后对于一个需要分辨率为1024*768的显示画面,我们只要让这个平面显示器的组成有1024*768个pixel,便可以正确的显示这一个画面。在图9中,每一个RGB的点之间的黑色部分,就叫做Black matrix。我们回过头来看图8就可以发现,black matrix主要是用来遮住不打算透光的部分。比如像是一些ITO的走线,或是Cr/Al的走线,或者是TFT的部分。这也就是为什幺我们在图9中,每一个RGB的亮点看起来,并不是矩形,在其左上角也有一块被black matrix遮住的部分,这一块黑色缺角的部份就是TFT的所在位置。
图10是常见的彩色滤光片的排列方式。条状排列(stripe)最常使用于OA的产品,也就是我们常见的笔记型计算机,或是桌上型计算机等等。为什幺这种应用要用条状排列的方式呢? 原因是现在