我们都知道,PLC要控制伺服电机有两种思路,两条思路分别如下:
一种电路:PLC-----伺服控制器-----伺服电机
二种电路:PLC-----PLC模块----伺服控制器-----伺服电机 (PLC模块即为各PLC厂家自己的定位模块,如西门子的FM357,罗克韦尔的1756-M08SE模块,三菱的PG1模块等等)
对于第一种控制方案:因为目前大多数PLC都是带有高速脉冲输出的一般是Q0,Q1两个OUT口,象GE的这两个口可以输出最高65KHZ的脉冲,所以,直接计算好伺服电机的转数或要走的距离,按比例发脉冲给伺服驱动器就可以了,当然还要有个方向信号控制电机顺转还是逆转,所以还需要1个控制方向的OUT端,这个口可以是个非高速口比Q3,Q4...象你说的从PLC接1个COM、24V和Q0的那种其实就是我所说的这个方式,但你这个怕是电机没有正反转,或直接把正反信号在开关上接过去了。
本期擂台:设计一个由“PLC-----伺服控制器-----伺服电机”即PLC控制伺服电机的第一种思路的项目或实验。PLC及伺服控制器的品牌不限,但要求有尽可能详细的通信协议及设计过程和组态编程过程。回答的最好最全面的首先拿大奖!
工控PLC擂台每周一期,本期下周末结贴。奖项设置:一等奖1名:50MP,二等奖5名:10MP,三等奖10名:30积分。
MP介绍:gongkongMP即工控币,是中国工控网的用户积分与回馈系统的一个网络虚拟计价单位,类似于大家熟悉的QB,1个MP=1元人民币。
MP有什么用?兑换服务:以1个MP=1元来置换中国工控网的相关服务。 兑换现金:非积分获得的MP可兑换等值现金(满100MP后、用户可通过用户管理后台申请兑换)。
楼主最近还看过
PLC控制伺服
以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。
以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下:
机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。
如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。
有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下:
一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线:
pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。
pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。
上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。