1.风电在线运维监测系统
1.1. 系统现状
风能作为一种清洁的可再生能源,越来越受到世界各国的重视,而风机齿轮及齿轮箱极容易受到损害和出现故障,直接给企业带来巨大的经济损失。
预知性维护是一种最新的维护模式,是以状态监测与故障诊断技术为基础,根据设备的实际状况定制备件,制定维修计划,相对于其它维护模式可以有效节约维护成本,减少停机时间。尤其适用于风力发电机关键部件,而安装在线监测系统是实现风机预知维护的基础。
风电震动监测系统,针对风力发电设备本身结构复杂,考虑到恶劣环境和各种干扰,对风力发电机组关键部位进行多传感器振动监测,提取风机齿轮箱等关键设备的运行的典型特征,并结合云平台专家模型算法,实现远程诊断,故障分析,发现隐患,找出根源,为正确措施,提供依据。在线监测系统可实现远程监测、诊断、预判,能有效解决风场机械工程师短缺等问题。有助于风电场从初级管理模式逐步过渡到少人值守,甚至无人值守的数字化风电场,是风场管理模式的发展趋势。
1.2.在线振动监测的意义
由于风电机组往往地处偏远,环境恶劣,塔架太高,设备维护人员难以实施离线振动监测。对风电机组实施的线振动监测系统,通过安装更低成本线振动监测设备,有效数据上传、共享和分析,预判大部件故障信息,进而指导计划性维护与维修,避免因设备严重损坏而引起强迫停机的严重后果,极大地提高设备管理工作效率。
1.2.1.降低运维成本
通过安装在线监测系统,可以有效监测出传动链的早期故障,并进行及时维护,避免发展成为更为严重的故障,延长部件的使用寿命,降低风机维修成本。可以有效避免因故障停机导致的非计划维修,减少计划维护时间,提高风机可用率和发电量。
1.2.2.提高风机可用率
基于先进的预知维护技术,快速响应和排除风机故障,减少因故障和检修等因素导致的停机时间,提高风机可用率,减少发电量损失。通过安装在线监测系统可以有效避免因故障停机导致的非计划维修,减少计划维护时间,提高风机可用率。
1.2.3.提高工作效率
以风电厂的核心业务流程为驱动,显著提升工作效率和管理能力,优化机组备件管理及维修计划,减轻工作人员的劳动强度,更加保障了工作人员的安全性。亦可分析部件失效原因,为风电机组设计和制造的改进提供依据。
1.3.故障原因简析
我国风电产业目前处在高速发展阶段,其对优化能源结构、促进节能减排的作用日益凸显。但因为风电机组大多安装在风能丰富的地区,而这些地区气候条件恶劣,同时机组承受无规律、变速变载荷的风力作用,导致机组内部各部件在运行过程中极容易出现故障,造成巨大的经济损失。
在处理发电机、叶片等传动链部件故障时,由于所需备件需要很长的准备时间,同时现场维修需要租赁吊车等专用设备,所以造成的停机时间远大于其它故障。机组传动链故障需要支付高昂的维修费,长时间的停机降低了机组的有效利用率。因此,对机械部件的维护是风电机组维护的重点。
1.3.1.轴承故障
滚动轴承是旋转机械中最常用部件之一,一般都是在匀速状态下运行的。由制造缺陷、安装不当、磨损等,造成的部件故障损伤,常具有隐蔽性、突发性,甚至造成抱轴卡死故障,致使机组振动加大,轴承寿命降低,造成其它相关正常部件寿命终止(如正常运行机械密封由于轴承更换而被迫报废)。用故障特征频率(属于高频振动)来识别滚动轴承的故障是目前简单有效的方法。
1.3.2.联轴器不对中
两个相连接的机器轴线不平行或不重合,一个或多个轴承安装倾斜或偏心,即为不对中。造成不对中的原因可以是装配不当、调整不够、基础损坏、热胀或联轴节锁死等。联轴器不对中,会造成机组振动加大,轴承和机械密封损伤,甚至联轴器螺栓断裂。
1.3.3.齿轮故障
齿轮是最常见的传动部件,在机械传动、增速、减速等方面得到广泛应用。由于齿轮结构和制造工艺、安装等因素的影响,或机组长时间停机等,都可能导致齿面损伤。统计表明,在齿轮箱的全部零件中,齿轮自身的失效比例占60%。
1.3.4.基础松动
设备固定地脚螺栓断裂或松动,基础找平斜铁脱落、找正垫片脱落,甚至支撑结构裂纹,比如钢制制成框架焊口开裂造成基础支撑刚性下降,导致机组振动急剧加大,改变系统固有频率可能引发系统共振,造成机组结构性损伤。
1.4.解决方案
1.4.1.传感器测点布置
依据当前风力发电设备的现场工作状况,较容易产生故障的部位常常是齿轮箱齿轮和发电机以及它们前后轴承,并考虑到现场情况及测试的方便性,因此,在监测中我们常常选择齿轮箱、发电机的前后轴承作为测量重点:
(1)由于风力发电设备机组系统的复杂性和工作条件比较恶劣性,如此布置的目的就是为了方便测试。
(2)由于轴承承载着机器的负荷,诸多常见的机械问题(如不对中、不平衡、油膜振荡、松动等)均会把振动信号传给轴承。因此通过监测轴承的振动,就会及时发现常见机械故障和轴承缺陷,为设备及时必要地维修赢得了足够时间。
金风750KW风力发电机组,在主轴承、齿轮箱输入、输出轴承座及行星部位、发电机两侧轴承座处加装振动加速度传感器;增加倾角传感器,用于监测风力发电机水平角度测量;实时测量风电机组发电机前后轴承座表面的声发射数据,确定发电机前后轴承的健康状况。
安装位置 安装方向 标准加速度
传感器
低频加速度
传感器
倾角
传感器
噪声
传感器
主轴承 径向 1
齿轮箱输入端轴承座 径向 1
齿轮箱行星轮部位 径向 1
齿轮箱输出端高速轴 径向 1
齿轮箱输出端低速轴 径向 1
发电机输入端轴承座 轴向 1
径向 1
发电机自由端 径向 1
发电机底座 水平 1
塔体 垂直 1
发电机前轴承座表面 1
发电机后轴承座表面 1
小计 6 2 2 2
合计 12
1.4.2.金风科技振动监测云平台系统
系统中,每个风机配备一台震动监控箱,内部安装VMD300风电监测设备,VMD300可以外接传感器,包括振动(通过AD采集),倾角(通过485总线),噪声(通过AD采集)等。在风场系统通过研华管理型光纤环网交换机,实现现场数据和企业云平台的连接。在云平台通过研华的WebAccess实现多个风场的风机的运维管理。
系统架构图
2.产品规格参数
2.1.震动传感器
参数 规格
灵敏度 100mV/g
加速度范围 80g peak
频率响应(±3dB) 0.5Hz~14,000Hz
温度响应 –50°C~+120°C
供电电压 18-30VDC
驱动电流 2~10mA
输出阻抗 <100,交流响应
外壳材质 316L不锈钢
安装螺钉 1/4-28转M6×1
重量 90克
2.2.低频震动传感器
参数 规格
灵敏度 500mV/g
加速度范围 10gpeak
频率响应(±3dB) 0.2Hz~14,000Hz
温度响应 –50°C~+120°C
供电电压 18-30VDC
驱动电流 2~10mA
输出阻抗 <100,交流响应
外壳材质 316L不锈钢
安装螺钉 1/4-28转M6×1
重量 90克
2.3.噪声传感器
参数 规格1 规格2 规格3
音头尺寸(英寸) 1/2(12.7mm) 1/2(12.7mm) 1/2(12.7mm)
灵敏度(mV/Pa) 16 50 32
频带范围(Hz) 20-40k 20-20k 20-16k
应用场合 自由场 自由场 自由场
极化电压(V) 0 0 0
动态范围(dB) 25-150 18-136 20-130
供电方式 ICP供电
供电电流 4.0mA
输出方式 交流输出
螺纹尺寸 WS2F
2.4.倾角传感器
参数 规格 参数 规格
精度 0.001° 抗振性能 >2000g
分辨率 0.0005° 工作温度 -40℃~+85℃
防护等级 IP67 存储温度 -55℃~+100℃
测量轴 X、Y轴 零点温度漂移(-40℃~85℃) ±0.0007°/℃
量范围 ±30° 灵敏度误差(25℃) ±0.01%
供电电压 9-35V 重量 240g(不含包装盒)
输出方式 RS232、RS485可选 体积 L103.8mm*W55.4mm*H26mm
2.5.VMD300监测平台
参数 规格
CPU AtomD510-1.66G
内存 1G板载
存储 可选
容量:(1G~128G的CFC电子盘)
支持密码锁及数据保护(一键永久清除数据)
操作系统 可选:WinCE、Linux或WinXP(embedded)
串口 1×RS232/RS485
以太网 2×10/100Mbps
GPRS/Wifi 可选
USB 2×USB
VGA 1×VGA
IO采集 12通道同步采样:
输入信号范围:
a.输入信号绝对电平范围:-12V~22V;
b.共模输入范围:-12~22VDC;
c.差模输入范围:+/-2.4V电压电流:24V/4mA;
信号类型:交流耦合输入,0~4Vpp;
低通滤波:截止频率独立可调;
采样频率:可调,最高64kHz;
采样精度:16位分辨率;
光电隔离:2500VRMS;
12路恒流激励输出
独立恒流激励源:通道独立可控;
电压电流:24V/4mA;
可以为传感器提供电源;
2路频率信号输入
信号类型:脉冲;
电压范围:0~30VDC;
采集频率:0.01~50KHz;测频精度:1us
光电隔离:2500V隔离;
电源 18~36V,典型输入24V,3000V隔离
功耗:小于20W
固定安装 设备内部USB加密狗(DONGLE)安装位;
支持两方向导轨安装,安装导轨另配;
传感器电缆绑线架,方便电缆固定;
结构 铝合金,重量:2Kg
体积(W*H*D):235*145*44(mm)
环境 温度:-40~85度
湿度:相对湿度0~90%,非结露
其它:进行特别处理,可适应强振动及盐雾环境
其他 看门狗功能,无人职守,不间断运行;
远程监控机箱内部温度、CPU温度、供电电压;
通过网络远程硬关、开机功能;
传感器断线检测功能,仪表LED灯指示或调用驱动进行系统管理;
正弦波信号发生器功能,便于现场测试和标定模拟通道;
2.6.系统展示
2.6.1.硬件特点
在线振动监测仪高度集成化:
集多通道振动数据采集、以太网数据通讯接口、通道可配、RS232/485接口、传感器接入和供电、现场LED状态指示于一体。
高防护等级
光电隔离支持2500V隔离;进行特别处理,可适应强振动及盐雾环境;产品符合规范:
GB/T 17214.1-1998工业过程测量和控制装置环境试验
GB/T17214.1 工业过程测量和控制装置工作条件
GB 6587.4-1986电子测量仪器振动试验
GB/T 17626.2静电放电抗扰度试验
GB/T 17626.3 射频电磁场辐射抗扰度试验
GB/T 17626.4电快速瞬变脉冲群抗扰度试验
GB/T 17626.5-1998浪涌(冲击)抗扰度试验
GB/T 17626.5 浪涌(冲击)抗扰度试验
GB 6587.4 电子测量仪器振动试验
GB 12325 电能质量供电电压允许偏差
GB/T 17626.4-1998电快速瞬变脉冲群抗扰度试验
安装方便:
模块化设计,方便系统扩展;结构紧凑,易于安装。
设备展示
为金风科技OEM定制设备和IP65防水箱及传感器接线
2.6.2.软件特点
分布式Web云平台
支持SQL Server或Oracle数据库,实现对所有采集的振动数据和分析诊断的数据库管理,可以展示频谱、波形、轨迹图、波特图、瀑布图、基于波形或局部波形的频谱分析结果,允许授权人员通过Web Client浏览,并发调用云服务,进行振动监测和分析。
丰富的轴承数据库
涉及38个国际品牌的三万余个轴承的特征频率参数,帮助管理人员识别轴承故障部位和性质,且数据库是开放的,允许使用者自行添加未收录的轴承数据。
健康预警功能
该功能主要对运行设备进行在线监测,通过与相关组态的振动标准进行比对,判断设备运行状态的振动量级(优、良、中、差),并对异常设备及时发出不同级别的报警。支持ISO10816及TA两大振动标准体系。
统计报表管理
该功能提供各种统计分析功能,完成多种不同需求的统计报表。如:报警报告、详细异常报告、最新测量报告、设备概要报告、注释报告、路径报告、结构报告等。
波形音频还原
支持将采集的波形数据进行模拟声音回放,并可生成单独的音频文件进行播放,对工程师查找轴承、齿轮等故障提供了强有力的辅助手段。
软件展示
3.OEM&ODM定制服