配电网由于电压等级较低,其绝缘水平也较低,所以容易遭受过电压事故,尤其是雷害事故。过电压主要有两种,一种是大气过电压,一般是雷电压;另一种是操作过电压,即一经操作而产生的过电压。下面就过电压保护中所遇到的一些问题做简要分析。
一、输电线路的防雷保护问题
对新建的线路,原则上应按“过电压保护设计技术规程”的规定来执行,而对一部分老旧的线路则应根据线路的先天条件,本着节约的原则采用适当的改进措施。如新建的110千伏及以上的输电线路,应全线悬挂避雷线(轻雷区除外),且其保护角应尽量做到20°-30°。对处于山区的输电线路,雷绕过避雷线而击于导线的概率要比平原地区的输电线路约高三倍。即相当于避雷线保护角增大8°,因此对于经过山区的输电线路应采取较小的保护角,对重要的线路应尽可能采用双避雷线,以减少绕击事故,保证线路的安全运行。
多年来的运行经验证明,输电线路如能广泛采用自动重合闸或备用电源自动投入装置,对保证不间断供电所起的作用很大。因为线路的雷击故障往往是瞬时性的,有70-80%是可以重合成功的。
二、变电所的防雷保护
对于变电所的设备应完全处于避雷针或避雷线的保护范围之内,不留任何空白点之外,最主要的问题是认真做好具有完善的进线保护。
长期的运行经验证明,进线保护段首段的管型避雷器GB,能有效地限制浸入波的幅值,并使通过母线上阀型避雷器的电流不致超过5千安。当线路断路器断开运行且带有电压时,如果未安装管型避雷器GB2,线路侧落雷时由于雷电波反射造成电压升高将使断路器的套管发生闪络。但必须指出的是GB2的外部间隙不能过小,否则容易在断路器合闸状态下也发生动作,而产生截断振荡波,将会威胁主变压器的安全,这类事故在国内外都多次发生过,应引以为戒。对进线保护简化的农村变电站,避雷器与主变压器的距离越近越好(一般最好小于5米)。
三、研究解决配电网中的铁磁谐振过电压
谐振按其性质不同分线性谐振、参数谐振和铁磁谐振三种。在中性点非有效接地系统中主要有基波谐振、高频谐振和分频谐振。基波谐振时两相电压同时升高,而分频谐振也是两相电压同时升高。这种情况出现时,过电压和过电流的倍数均较高,所以往往造成电压互感器烧毁和保险丝熔断,后果比较严重,此类事故十分普遍。
根据实际运行经验,铁磁谐振的发生往往是由下列激发条件所造成的:(1)电压互感器的突然投入;(2)线路发生单相接地(包括弧光接地);(3)系统运行方式突然改变或某些电气设备投、切;(4)系统负荷发生较大的波动;(5)电网频率波动;(6)负荷不平衡变化。
为了解决上述问题,我们有的放矢地进行了大量的试验研究工作,也采取了一些有效的措施,诸如:
1.选用励磁特性好,在最高线电压下铁芯磁通不易饱和的电压互感器,也可考虑采用电容式电压互感。
2.对10-35千伏系统中性点经消弧线圈接地的高压电网,做到合理布置,正确补偿,在运行操作中避免出现孤立的电网。
3.采用分频继电器,当发生谐振时,自动将电压互感器二次开中三角经电阻短接。
4.在10千伏电压互感器二次开口三角处长期串接500瓦白炽灯泡或分频继电器。
5.将10千伏及以下高压用户电压互感器高压中性点改为不接地。
6.在电压互感器二次开口三角处加装消谐器。
7.采用零序互感器的结线方案,即将三台单电压互感器高压侧接成星形,其中性点处通过一台零序互感器再接地,而对二次开口三角处不接任何仪表,这种方法能十分有效地消除三次谐波的影响。
为了彻底解决铁磁谐振问题,最根本的应从改善电压互感器的励磁特性人手,呼吁尽快恢复生产励磁特性优良的电压互感器,为保证电力系统安全运行创造有利条件。
楼主最近还看过