一、概述
在谐波分析仪中,我们常常提到的两个词语,就是DFT算法与FFT算法,那么一款功率分析仪/谐波分析仪采用DFT算法或者FFT算法,用户往往关注的是能否达到所要分析谐波次数的目的,而并未考虑两种算法之间有什么不同,采用相关算法的依据。下面就来介绍一下两种算法的不同以及适用的一些场合。
DFT算法,是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。
FFT算法,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的。它对傅氏变换的理论没有新的算法发现,但是对于在计算机系统或者说数字系统中应用离散傅里叶变换,可以说进了一大步。http://www.vfe.cc
二、 DFT与FFT的比较
(1) 运算量。
一般来说,FFT比DFT运算量小得多,N点的FFT需要做(N/2)log2N次乘法运算,而N点DFT需要做N2次乘法运算,由此看来N点DFT运算量大约是FFT的2N/log2N倍,例如对1 024点的变换,DFT大约是FFT的200倍.然而实际应用时存在下列情况:
① 实际应用时DFT中的乘法可以是实数和复数相乘,原因是输入信号可以是实数,而FFT只能是复数和复数的乘法,原因是FFT是分级运算的,中间运算过程都是复数运算,由此来看DFT的运算量大约是FFT的Nlog2N倍,而不是2N/log2N倍.(2) 点数或采样率的可选性。
对DFT来讲,其变换点数可任意选定,如实际应用时采样率已确定为1 000 Hz,如选变换点数为1 000点,那么每条谱线正好可落在整数频点上.FFT的变换点数必须是有规律的,如基数为2算法的FFT其点数必须是2M,如1 024点、4 096点等.在实际应用时为分析方便,采样率往往要定为变换点数的倍数,如2 048 Hz、8 192 Hz,以避免变换后的频谱落在复杂的带小数点的频点上.因此实际应用时FFT在变换点数选择或采样率选择上可能会带来局限性.
(3) 实时性。
DFT运算可以用采一点后立即进行相乘、累加运算的方法,即可以采一点算一点,从采样结束到DFT变换结束只需要一个点的运算时间.而FFT运算必须在全部点采集结束后才能开始进行计算,因此从某种角度讲DFT的实时性优于FFT.
(4) 数据内存开销。
对N点DFT来讲,如只需其中的M个频点,那么在计算时至少需2M个单元的数据内存,对N点FFT来讲则至少需2N个单元的数据内存,另外现有的FFT程序一般需要将系数放在数据内存区,因此需另选N个单元的数据内存,故DFT有可能比FFT更节省数据内存.
(5) 程序的复杂性 。
DFT计算程序非常简单而且可以非常方便地在非DFT专用芯片上实现,而FFT程序较为复杂.
(6) 动态范围或抗溢出性。
在定点运算的场合,DFT较FFT更容易实现多精度的运算, 例如在TI公司的16位定点DSP处理器中,采用的数据和系数为16位,而相乘并累加的结果可设为双字节即32位,一般来讲设计合理的话不会产生计算溢出的现象,免去了复杂的溢出控制,同时输入输出信号可保持较好的动态范围.FFT在程序中有防溢出的措施,然而在定点运算的场合点数越多输入信号的动态范围越小.