发表于:2009-05-19 19:22:18
楼主
【摘要】本文分析了水力发电机组甩负荷抬机的严重危害性及根治的必要性;指出了抬机根治的正确思路是使转轮室-尾水管段不发生水击;并对可编程控制器PID控制进行了编程。
【关键词】 根治 水锤 PLC PID控制
Aplies PLC to Effect a radical cure for raise when waterpower unit throw load
Zhu-wenjie
(Changsha University of science and technology electric college Changsha410015)
【abstract】 This paper analyzed the fearful fatalness of raise at waterpower unit throw load and Effect a radical cure necessarily ; here point out correct idea of Effect a radical cure for unit’s raise is don’t occur water hammer between Turn wheel’s room and Draft Tube; moreover play a programme for PID control of Programmable Logic Controller .
【keyword】Effect a radical cure Waterhammer Programmable Logic Controller PID Control
水力发电机组甩负荷抬机具有严重的危害性,必须予以彻底根治。我们只要正确认识发生抬机的根本原因,采用高新技术产品可编程控制器(Programmable Logic Controller,简称PLC,它把计算机技术与继电器控制技术有机地结合起来)实施PID控制使转轮室-尾水管段不发生水击,就可以根治抬机。
1.水力机组抬机根治的必要性
在水力发电生产实践中,水轮发电机组事故甩负荷后,为防转速飞逸要求导水叶快速关闭,而造成过水流量急剧下降导致转轮室真空度急剧变大,转轮室-尾水管段产生水力冲击波(又称水锤,传播速度1000m/s左右)。水锤反冲力与反向水推力之和大于机组转动部分重量时发生抬机,即Pm-Hsρ>Kz时发生抬机(式中Pm----水击产生后顶盖下最大正压强,单位化为kg/cm2;Hs----水轮机的吸出高度值(一般为负);ρ----水的重度;Kz----机组转动部分相对重量kg/cm2)【1】。过去苏联专家及国内专家对压力引水钢管内的水锤给予了足够重视,但对转轮室-尾水管段产生水锤带来危害没有给予足够重视。
抬机次数不多似乎不会造成对机组结构的破坏,人们也习惯于从提高材料强度和技术粗糙地减轻抬机程度等方面去应付抬机,无疑这些措施在过去很有积极意义。然而事实上,只要抬机存在,累积的结果就会破坏设备,发生重大事故。湖南省1965年8月水府庙水电站4#机、1985年10月安仁大石水电站2#机、1987年9月麻阳马颈坳水电站某台机组等都因抬机而砸断主轴卡环凹处,转子跌落于制动闸上;1988年3月怀化市红岩水电站4#机抬机落下时把主轴卡环凹处砸断一边未及时发现,之后机组重新起动后转动部分偏心旋转,转子四周冷却用风扇叶擦刮发电机定子,定子线棒(绕组)绝缘层被刮掉,强大的内部短路电流使发电机着火,令人触目惊心。
今设抬机高度为h(m),抬起落下后推力瓦碰撞镜板前的速度近似为V=√2gh,若h=0.01m(微抬),则V≈0.443m/s,这个值虽不大,但应注意推力瓦碰撞镜板Δt(非常小)时间后,V变成零;又设推力瓦碰撞镜板时的平均作用力与反作用力大小为F(牛顿),机组转动部分的质量为M(东江M=532000kg;葛洲坝小机M=1266000kg;葛洲坝大机M=1494000 kg;三峡M=2500000kg),则有FΔt=MV,∴F=MV/Δt,从而我们可以发现F大的惊人,并令α=F/Mg。
表1 水力发电机组微抬h=0.01m落下后推力瓦与镜板间平均作用力F(N)与α的值
可见Δt俞小,F俞大,冲击应力应变及材料疲劳问题使材料强度再大也难承受,特别是F传递到卡环凹处时就容易造成对主轴的破坏,材料强度大只不过承受碰撞的次数多些罢了,所以根治水力机组抬机十分必要。
2. 水力机组抬机根治的正确思路
文献【1】分析了传统的防抬机措施及其存在的原理性缺陷:即强迫式真空破坏阀由调速环下斜块速压而动作,阀之出气位置处顶盖下转轮室四周压力较高区,转轮室内进气量很小;自吸式真空破坏阀动作时已形成大真空度,加之水击波在t=(2×25~2×50)/1000=0.05~0.1秒后返回,入气位置虽佳仍进气极少;两段关闭导水叶法只能略微减轻不能消除转轮室-尾水管段水击,对解决大Kz值的机组抬机几乎无效,例如葛洲坝大江电厂14#机在1987年7月4日甩负荷抬机25mm。我们注意到转轮室-尾水管段水击是抬机的根本原因与症结所在,所以根治水力机组甩负荷抬机的正确思路是:机组甩负荷后为防转速飞逸要求导水叶快速关闭造成转轮室-尾水管段过水流量急剧下降时,为使转轮室-尾水管段不发生水击,应立即不延时自动向转轮室中心区域(压力较低区)补入与过水流量减小值相等的压缩空气流量(换算到转轮室压力状态下),以时刻维持转轮室压强在甩负荷前稳定流状态情况下。实现这一目标,利用高新技术是易行的,我们可以通过具有PID回路指令的可编程控制器(PLC)根据其CPU进行PID(比例-积分-微分)运算,再用PID运算输出控制电动调节阀调节进气量,重申控制目标就是:时刻维持转轮室压强与甩负荷前稳定流状态下压强一致。
3. 水力机组抬机根治PLC控制系统硬件与控制程序
3.1 为监测监控转轮室压强,在水轮机顶盖过流面直径为(D1+Dz)/2的分布圆周上(D1为转轮标称直径;Dz为主轴直径)沿+X、+Y、―X、―Y方向分别布置1号、2号、3号、4号四只压力传感器。
3.2 为向转轮室补入适量气体,在压缩空气供气总管与水轮机顶盖近中心区域入气口之间的供气支管(支管又开四叉输气,它可与调相压水结合)上串联一只电动调节阀调节进气量。若设支管内最大输气速为24m/s,则供气支管管径d≈33√Qsm(mm;Qsm为水轮机最大过水流量m3/s)。
3.3 在微机-PLC-PLC控制系统中设一台SIMATIC S7-222型PLC(8输入/6输出共14个数字量I/O点)并带一个EM235型(4路模拟量输入/1路模拟量输出)模拟量扩展模块。
3.4 首先给出输入、输出信号内存变量地址分配见表2,然后编写控制程序如后,为优化程序结构,减小扫描周期,采用主程序、子程序、中断程序的程序结构形式。
表2 输入、输出信号内存变量地址分配表
MAIN
LDN I0.0 机组出口断路器跳开后DL辅助触点引出通过上位机使I0.0置0
A I0.1 导水叶开度位置在空载以上~全开间时DKW通过上位机使I0.1置1
A I0.2 启动机组事故信号后通过上位机使I0.2置1
A I0.3 上位机发出停机指令后,I0.3置1
= M0.0
LD M0.0
= Q0.0 给电动进气调节阀加上工作电源
LD M0.0
A SM0.1
S Q0.1 电动进气调节阀立即开至全开
LD M0.0
XORD AC0,AC0 清空累加器AC0
XORD AC1,AC1 清空累加器AC1
XORD AC2,AC2 清空累加器AC2
XORD AC3,AC3 清空累加器AC3
MOVW AIW6,AC3 把4号压力传感器信号(模拟量)存入累加器AC3
/I 4,AC3 取4号压力传感器信号量的1/4
MOVW AIW4,AC2 把3号压力传感器信号(模拟量)存入累加器AC2
/I 4,AC2 取3号压力传感器信号量的1/4
MOVW AIW2,AC1 把2号压力传感器信号(模拟量)存入累加器AC1
/I 4,AC1 取2号压力传感器信号量的1/4
MOV