科氏力质量流量计是工控仪表行业常用的一种仪表,请说明科氏力质量流量计的测量原理。
下周初结贴,9个最优回帖分别获得20MP、10MP、10MP、10MP、20积分、20积分、20积分、20积分、20积分!
MP介绍:gongkongMP即工控币,是中国工控网的用户积分与回馈系统的一个网络虚拟计价单位,类似于大家熟悉的QB,1个MP=1元人民币。
MP有什么用?兑换服务:以1个MP=1元来置换中国工控网的相关服务。 兑换现金:非积分获得的MP可兑换等值现金(满100MP后、用户可通过用户管理后台申请兑换)。
楼主最近还看过
一、 工作原理
如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为: δFc = 2ωVδm
因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。
图1 科里奥利力的形成 图2 早期科氏力质量流量计
下面简介一种科氏流量计: S形测量管质量流量计
如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。
图3 S形质量流量计结构
这种质量流量计的工作原理及工作过程,如图4所示。
图4 无流动时位移传感器的输出
当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动速度Vx为零;
图5 振动管受力分析
当流体质点有进口流入图示振动方向的测量管时,流体质点的垂直流动速度为+Vy,同样在流体质点流向出口时,其垂直流动速度为-Vy。由此可以推出,流体质点在通过振动的测量管时,垂直方向的速度是一个从零逐渐加大,直到中间最大,再逐渐减小到零的过程。由力学原理可知,速度的变化是由加速度引起的,而加速度是力作用于其上的结果。根据这个原理,称这个垂直速度变化为科氏加速度Ac,因此作用于流体质量M上的科氏力为Fc=Mac。在测量管上与中心距离相等的两点上,作用的科氏力大小相等,方向相反。
此科氏力作用在测量管上,就产生了如图5所示的结果,即在中间点上产生一对力,引起测量管轻微的扭曲或变形。而实际上在振荡运动时是两根S管同时所受的振荡,其运动方向相反,受力相等,如图6所示。
图6 作用在测量管上的科氏力
随着振荡运动的进行,测量管被周期性地分开、靠拢,科氏力也周期性地作用在两根测量管上,通过安装在测量管上的位移创按其A、B,测出由科氏力引起的测量管相对位置的变化,通常转化为测两点的相位差,如图7所示。这个相位差的大小与质量流量成正比。
图7 位移传感器的输出
引用jiaoanpeng 的回复内容:这个怎么说,还是看看说明书吧,呵呵。偶倒是不很明白。
我这里刚好有一份E+H科氏质量流量计的说明书,放在资料共享供下载:
http://www.gongkong.com/Common/ShowDetails.aspx?contr=DatumView&ElementID=2011022315141300002
说明书有关于科氏质量流量测量原理 :
一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。科氏质量流量计依据牛顿第二定律:力=质量×加速度(F=ma),当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:
(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;
(2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。
当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc: ΔFc=2ωVρAΔx (1)
式中,A—管道的流通截面积。
由于存在关系式:mq=ρVA
所以:ΔFc =2ωqmΔx (2)
因此,直接或间接测量在旋转管中流动流体的科里奥利力就可以测得质量流量。
在传感器外壳中的流量管振动有它的固有频率。振动管由安装于振动管端部的电磁驱动线圈驱动作近似于音叉的振动。当流体流入流量管时被强制接受流量管的垂直运动。在流量管向上振动的半个周期时,流体反抗管子向上运动对其垂直动量的增加而对流量管施加一个向下的力。反之,流出流量管的流体至流量管施加一个向上的力以反抗管子向上振动而对其垂直动量的减少。这便导致了流量管产生扭曲。在振动的另外半个周期,流量管向下振动,扭曲方向则相反。这一扭曲现象被称之为科里奥利(Coriolis)现象。
根据牛顿第二定律,流量管扭曲量的大小是完全与流经流量管的质量流量的大小成正比的。安装于流量管两侧的电磁信号检测器用于检测振动管的振动。质量流量大小是由这两个信号的相位差来决定的,当没有流体流过流量管时,流量管不产生扭曲,两边电磁信号检测器的检测信号是同相位的,当有流体互流量管时产生流量管的扭曲,从而导致丙个检测信号的相位差,这一相位差直接正比于流过的质量流量。
原理都是懂得,就是不懂的也可以看看说明书,看看资料甚至百度一下,就可以明白,但是由于不同的厂家需要有自己的产权因此制造了形式各样的质量流量计,不管外形怎样其测量原理都是一样的,那为什这个检测原理一样制造形式不一样的质量流量计的精度不一,寿命不一,质量不一呢,为什么国内的质量流量计的质量普遍不如外国的质量流量计呢。这就是制造的差距,如同原子弹的原理大家都知道,可是真正造出来的很少。
那么这个质量流量计的难点在那,偶对这个质量流量计不精通,只是个仪表的维修工,但是偶感觉怎样准确的检测到这个扭力使其重点,怎样在检测中不引入干扰也是重点,怎样把这个进入的干扰消除更是重点,因此偶的感觉怎样把这个扭力准确的无干扰的检测出,然后在无误差的处理,换算成相应的质量是重点,这个怎样保证介质质量——扭力——检测——处理——显示,这个过程不失真,不干扰就是难点,偶纳闷了偶这个经济第二大国为什么造不出来和洋鼻子一样的质量流量计呢。
文章转至中国化工仪器网
一、 科氏力质量流量计的工作原理科氏力质量流量计是运用流体质量流量对振动管振荡的调制作用即科里奥利力现象为原理,以质量流量测量为目的的质量流量计。一般由传感器和变送器组成。
如图一所示。当质量为δm的流体质点,以速度V沿管道AB运动,同时,管道AB又以A点为圆心以角速度Ω转动,当该质点做上述复合运动时,在任意一点M处,质点具有两个加速度分量:向心加速度ar, 方向指向A点;科氏加速度ak,方向向上,量值为2ΩV。为使流体质点具有科氏加速度,需要在ak 方向施加一个大小等于2ΩVδm的力,这个力来自管道,而流体质点反作用于管道上的力就是科氏力Fc,方向如图所示。
Fc=2ΩVδm (1)
如图二所示,若流体密度为ρ,以速度V沿管道AB流动,设管道横截面积为S,则任一段长度为△X管道上的科氏力△Fc为:
Fc= -△mak (2)
式中△m为长度△X管道中的流体质量。△m=ρS△X
△Fc=-2ρS△X(Ω×V) (3)
由于上述管道中的流体,其Ω与V的夹角为90oC,质量流量qm=ρSV, 有: qm=△Fc/2Ω△X (4)
从式(4)中可以看出,测量在旋转管道中流体的科氏力就可以直接测得质量流量。在实际应用中使测量管道做简谐振动,用振动的方式代替旋转的方式,利用电磁或光电的检测器检测科氏力对振动的影响从而测得管道中的质量流量。
按照传感器测量管的形状,质量流量计分为直管型和弯管型两大类。直管型一般尺寸较小,不易积气,易于清洗,但由于其振动系统刚度大,谐振频率高,相位差小,电信号处理较困难。为了降低谐振频率,管壁必须较薄,而较薄的管壁会使耐磨性和抗腐蚀性变差。弯管型的振动系统刚度较低,电信号容易处理,可选用较厚的测量管壁,其耐磨性和抗腐蚀性较好,但由于形状复杂,容易积存残渣和气体,引起误差,结构尺寸也较大。
从式(4)中还可以看出,质量流量并不受压力的影响,只同测量管的几何形状和测量系统的振荡特性有关。但实际上,工作压力的变化会引起测量管几何尺寸的改变并对测量系统的振荡特性产生影响,从而引起测量误差。为了实际证明这一点,我们采用实验的方法分析工作压力的变化对流量计测量精度的影响。
二、 工作压力对流量计测量精度的影响
利用可调节工作压力的静态称量法水流量标准装置在不同压力下对同一台流量计进行测试,从而得到压力对流量计精度的影响值。实验选用国内应用较广的一型弯管型和一型直管型流量计作为被测对象,所用的标准装置是通过标定的系统,实验步骤依照JJG897-95《质量流量计检定规程》进行,并参考了ISO 10790的有关要求。
1.实验方法 按照正常的检定操作安装好流量计,设定好检定压力,在进行完系统预热,调整流量计的零点后。进行检定操作,完成一次检定过程后,重新设定检定压力,在新的检定压力下再次进行检定操作,直到完成全部实验压力点的测试。在全部实验过程中,不对流量计的设置做改动。
2.弯管型实验数据
表1为对一台DS300流量计在不同检定压力下的测试数据
表1 DS300型流量计在不同检定压力下的测试数据表
依照流量值对表1的数据进行分析,分别计算在各流量点下的流量计的误差变化得到表2-5。
3.直管型
表2 当流量为20t/h不同工作压力状态下的误差情况表
实验数据
表6为一台63FS80流量计在不同检定压力下的测试数据
三、 解决压力影响的方法
应该指出的是,我们此次实验选用的流量计,是受压力影响较大型号的流量计,对其它型号的,特别是DN50口径以下的流量计受压力影响较小。为了避免实际应用中压力变化对流量计测量精度的影响,可以采取以下方法:
1.在选型时尽量选用受压力变化影响小的质量流量计;
2.对流量计进行在线检定;在不具备在线检定条件时,也应使流量计在工作压力下进行离线检定;
3.对一些受压力影响所产生附加误差的变化较稳定的流量计,可采用安装压力变送器的方法以软件的方式实现进行实时的压力补偿计算。