1.问:为什么有时要在并联补偿电容器回路中串入一个小值电抗?
答:A、在工业企业的35千伏及以下配电网络中,由于整流型负载显著增加,局部网络的电流中往往有高次谐波存在,从而使受电端母线电压发生畸变。母线电压的畸变,对供电网络、用户以及某些电气设备都产生有害影响。尤其是对并联补偿用的移相电容器,危险更大。因为移相电容器对高次谐波的阻抗小,常因电压畸变而产生严重过电流,甚至烧坏电容器。另一方面,接在母线上的并联电容器组,对高次谐波有放大作用,因而使用母线电压畸变更加严重,形成恶性循环。
B、在电容器回路中串入小值电抗器后,补偿支路的谐波电抗也呈感性。它与系统中其他感性电抗并联,使系统的谐波等值阻抗减小,从而减小了母线的谐波电压,抑制了母线电压的畸变。此外,它还能够有效地减小电容器支路中由于高次谐波所引志的稳态谐波过电流,限制电容器组的合闸电流冲击,减小电容器支路切断时所产生的过电压。因此,在电容器回路中串入小值电抗,无论对改善网络的供电质量还是保证电容器的安全运行,都是非常必要的。
楼主最近还看过
23.问:电压和电流信号的优缺点是什么啊?
答:电压输入(0-10V)的优点是:信号好处理(同样可以测试“断线”),缺点是长距离传输信号有衰减;电流信号输入(4-20mA)的优点是:可以长距离传输在输入端的电压没有衰减。缺点是信号需要转换(电流变电压)略有麻烦。至于干扰,两种的输入形式都存在此问题,都需要认真的去处理噪声问题。
综上,如果信号传输距离较远(10米以上乃至100米以上)采用电流输入,如果信号传输距离较近(5米以内)采用电压输入即可。介于5-10米之间的传输距离,两种形式均可,看你的习惯和现场的需要了,完全由你灵活掌握.
一般A/D输入口的输入阻抗很大,达到几兆以上。输入电流很小。导线内阻压降可以忽略。正因为输入阻抗很高,容易受干扰。尤其是小信号时。电流信号抗干扰要强的多.
24.问:为什么交流接触器流过的控制电流小呢?
答:接触器,就是一种继电器
继电器是所有间接或自动控制放大设备的总称,其中我们常说的继电器学名叫中间继电器
中间继电器的大功率版本,就是接触器,
接触器原理和继电器完全一样.即,我们接通和分断辅助线路的电源,事实上是接通和分断电磁铁(大多为电磁铁,但也有其他的比如翻转式的)的电源,实现控制开关闭合和断开。
通俗点说,我们人用手去合电闸,电源是不是通了?然后我们只做了一个机械动作,就是把他合上,电流没有从我们这里流过,而接触器就是这样,为了方便不让我们用手去合闸,我们通过控制他的电磁铁,然后电磁铁吸引衔铁让接触点接触实现接通和分断
辅助接头就是电磁铁的线路,至于电源从那里得到无所谓,因为他只是一个电磁铁,可能只需要几十毫安电流就足够吸引上面的接触片了,而接触片的大小,就决定着接触器的容量.
所以,我们可以通过控制一个相对比较安全的低压小电流线路,通过接触器,实现控制大功率的线路。
26.(1)问:变压器计算口决,已知变压器容量,求其各电压等级侧额定电流?
答:口诀a :容量除以电压值,其商乘六除以十。说明:适用于任何电压等级。在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:容量系数相乘求。已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。
口诀b :配变高压熔断体,容量电压相比求。配变低压熔断体,容量乘9除以5。说明:正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。
27.问:已知三相电动机容量,求其额定电流?
答:口诀(c):容量除以千伏数,商乘系数点七六。
说明:(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。三相二百二电机,千瓦三点五安培。常用三百八电机,一个千瓦两安培。低压六百六电机,千瓦一点二安培。高压三千伏电机,四个千瓦一安培。高压六千伏电机,八个千瓦一安培。
(2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
(4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2 去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。
(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。
28.问在工控图纸上看WZ代表热电阻,请问到底什么是热电阻?
答:
概 述 工业用热电阻作为测量温度的变送器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中从-200~+850℃范围内的液体、蒸气和气体介质以及固体表面的温度、防爆结构适用于防爆场合。
原 理 工业用热电阻分铂热电阻和铜热电阻两大类。热电阻是利用物质在温度变化时自身电阻也随着发生变化的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测量介质中有温度存在时,所测得的温度是感温元件所在范围内介层中的平均温度。
结 构 装配式热电阻主要由接线盒、保护管、接线端子、绝缘瓷珠和感温元件组成基本结构,并配以各种安装固定装置组成。
29.问:请问热电偶和热电阻的区别?
答: 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同.
首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。
热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。
目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。
热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。
补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。
其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。
工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。
30,问:电加热器的应用行业与原理?
答: 概述
循环式电加热器是一种国际流行的高品质长寿命电加热设备。用于对流动的液态、气态介质的升温、保温、加热。当加热介质在压力作用下通过电加热器加热腔,采用流体热力学原理均匀地带走电热元件工作中所产生的巨大热量,使被加热介质温度达到用户工艺要求。
工作原理
循环式电加热器是一种消耗电能转换为热能,来对需加热物料进行加热。在工作中低温流体介质通过管道在压力作用下进入其输入口,沿着电加热容器内部特定换热流道,运用流体热力学原理设计的路径,带走电热元件工作中所产生的高温热能量,使被加热介质温度升高,电加热器出口得到工艺要求的高温介质。电加热器内部控制系统依据输出口的温度传感器信号自动调节电加热器输出功率,使输出口的介质温度均匀;当发热元件超温时,发热元件的独立的过热保护装置立即切断加热电源,避免加热物料超温引起结焦、变质、碳化,严重时导致发热元件烧坏,有效延长电加热器使用寿命。
应用范围
循环式电加热器典型的应用场合主要有:
1、化工行业的化工物料升温加热、一定压力下一些粉末干燥、化工过程及喷射干燥。
2、碳氢化合物加热,包括石油原油、重油、燃料油、导热油、滑油、石腊等
3、工艺用水、过热蒸汽、熔盐、氮(空)气、水煤气类等等需升温加热的流体加温。
4、由于采用先进的防爆结构,设备可广泛应用在化工、军工、石油、天然气、海上平台、船舶、矿区等需防爆场所。
31、变压器有异常声音怎么处理呀!
(1)、分析开关故障
变压器有“吱吱”的放电声,电流表随响声发生摆动,瓦斯保护可能发出信号,油的绝缘降低,这些都可能是分接开关故障而出现的现象,分接开关故障的原因有以下几条:
1. 分接开关触头弹簧压力不足,触头滚轮压力不均,使有效接触面面积减少,以及因镀层的机械强度不够而严重磨损等会引起分接开关烧毁。
2. 分接开关接头接触不良,经受不起短路电流冲击发生故障。
3. 切换分接开关时,由于分头位置切换错误,引起开关烧坏。
4. 相间绝缘距离不够,或绝缘材料性能降低,在过电压作用下短路。
(2)、三相电压不平衡
1. 三相负载不平衡,引起中性点位移,使三相电压不平衡。
2. 系统发生铁磁谐振,使三相电压不平衡。
3. 绕组发生匝间或层间短路,造成三相电压不平衡。
(3)、继电保护动作
继电保护动作,说明变压器有故障。瓦斯保护是变压器的主保护之一,它能保护变压器内部发生的绝大部分故障,常常是先轻瓦斯动作发出信号,然后瓦斯动作跳闸。
轻瓦斯动作的原因:(1)因滤油、加油,冷却系统不严密致使空气进入变压器。(2)温度下降和漏油致使油位缓慢降低。(3)变压器内部故障,产生少量气体。(4)变压器内部故障短路。(5)保护装置二次回路故障。
32、变压器瓦斯保护工作原理
瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。
在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。
瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。如QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。
33、继电器和接触器在电路中分别起到什么作用?
本质区别就是承受的载荷不同,电流容量大的是接触器,小的是继电器,还有区别使用在主回路的用接触器,控制回路用继电器。
在电气控制电路中,继电器属于逻辑部分,接触器属于执行部分,继电器既可以按照电路设计程序要求,发出脉冲使接触器的主触头断开,也可以按照电路设计程序要求,使接触器的主触头实现保持.如果把测量部分比做是人的神经的话,继电器等逻辑部分就是肌肉,而接触器则可比做骨骼,他们共同配合才能控制电路的分合闸.
接触器是一种用于控制电机等起停的一种电气设备,容量较大,具有较强的灭弧能力,属于一次设备。而继电器则属于继电设备,是二次设备,通过不同组合连接实现对一次设备进行控制、保护、监视等作用。有用于测量的电流(压)、阻抗继电器,用于增大触点容量和增加触点对数的中间继电器,用于获取必要延时的时间继电器,用于同期并列或检同期重合闸的同期继电器等。
34、蓄电池在电力系统的应用?
蓄电池在电力系统的作用
蓄电池是电力电源系统中直流供电系统的重要组成部分,它作为直流供电电源,主要担负着为电力系统中二次系统负载提供安全、稳定、可靠的电力保障,确保继电保护、通信设备的正常运行。因此,蓄电池的稳定性和在放电过程中能提供给负载的实际容量对确保电力设备的安全运行具有十分重要的意义。
然而蓄电池经过一定时间的使用后,常易因活性物质脱落、板栅腐蚀或极板变形、硫化等因素,而使容量逐渐降低直至失效。所以,找出落后电池,并将其予以处理,以便消除隐患,就是广大蓄电池维护人员的工作。过去几十年来我们一直使用防酸隔爆式铅酸蓄电池,积累了一定经验。但由于此种电池维护方法繁琐,目前已被具有免加水、安装灵活、占地面积小且不形成酸雾的阀控式密封铅酸蓄电池(VRLA)所取代。
35问:什么叫机电一体化?
一、“ 机电一体化”?它的来源是什么?
“机电一体化”在国外被称为Mechatronics是日本人在20世纪70年代初提出来的,它是用英文Mechanics的前半部分和Electron-ics的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合。
这一名称已得到包括我国在内的世界各国的承认,我国的工程技术人员习惯上把它译为机电一体化技术。机电一体化技术又称为机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。
二、机电一体化技术基本概念
机电一体化技术是在微型计算机为代表的微电子技术、信息技术迅速发展,向机械工业领域迅猛渗透,机械电子技术深度结合的现代工业的基础上,综合应用机械技术、微电子技术、信息技术、自动控制技术、传感测试技术、电力电子技术、接口技术及软件编程技术等群体技术,从系统理论出发,根据系统功能目标和优化组织结构目标,以智力、动力、结构、运动和感知组成要素为基础,对各组成要素及其间的信息处理,接口耦合,运动传递,物质运动,能量变换进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质的和能量的有规则运动,在高功能、高质量、高精度、高可靠性、低能耗等诸方面实现多种技术功能复合的最佳功能价值系统工程技术。
36问:什么叫水利电业、小水电、农村水电?
水利电业
水利电业是指水利系统建设和管理的电站电网,包括发供一体以及自发自供兼转供的电力公司,转供为主自发自供为辅的电力公司,只发不供的发电企业,以及事业单位企业化管理的水利工程附属电站等,是水利系统电力事业或企业、行业的简称。其中地方水利电业,各地视情况也称之为地方电力、地方水电、小水电、中小水电、农村水电等等,新时期主要称农村水电。农村水电既是电力工业不可替代的重要组成部分,又是水利事业不可分割的重要内容和极具活力的组成部分。正确认识和掌握农村水电与普通工业不同的开发经营特点,以及与电力工业既相同又不完全相同的技术、经济属*,对于我们紧密结合自身的属*和特点,解放思想,转变观念,明确新使命,建立新思路,采取新举措,按照中央“厂网分开、输配分开”分步实施的统一部署,积极地投身到发电端、主要是配电端的改革中,深化农村水电体制改革,转换机制、强化管理、加快发展,有著重要意义。
小水电、中小水电、农村水电
小水电是一个相对的、历史的、发展的概念。随著农村、地方经济的发展及其对农村、地方电力能源的需求,小水电的涵义在全国有过多次变化。50年代,指500千瓦以下的水电站和送电线路为农村小水电;60年代,指单机500千瓦、总装机3000千瓦及以下的水电站和送电线路为小水电;70年代,小水电是指单站容量在1.2万千瓦及以下的水电站及配套小电网;进入80年代,将单站容量在2.5万千瓦以下的水电站和配套小电网称为小水电;进入90年代,将总装机在5万千瓦以下的水电站和配套电网划为小水电,同时不少地方开始举办经营总装机5万、10万千瓦及以上的水电站和配套电网,统称中小水电。中小水电是主要依靠地方、群众力量举办并经营管理的中小水电站及与其配套的小电网的统称。新时期中小水电即为农村水电,是一项历史的、发展的、与时俱进的伟大事业。