浅析交流伺服电机矢量控制技术二 点击:68 | 回复:0



今生缘

    
  • [版主]
  • 精华:45帖
  • 求助:22帖
  • 帖子:4835帖 | 10148回
  • 年度积分:78
  • 历史总积分:111147
  • 注册:2011年3月02日
发表于:2017-06-10 21:42:44
楼主

从AC Motor的电流采样得到三相交流数值,通过Clark变换成二相坐标(αβ),再利用Park变换把静止的αβ坐标换成旋转的dq坐标,形成反馈值,与dq的指令值进行演算。

通过PI控制器的演算结果,我们可以得到dq两相的电压指令值,把旋转坐标的dq指令值通过逆Park变换,得到静止坐标的αβ,再通过逆Clark变换得到三相的电压驱动指令,控制SVPWM的输出。

另外,d轴对应励磁所产生的转矩,q轴对应永久磁石所产生的转矩。在SPM电机的控制时我们可以让d轴的指令值为0。但在IPM电机控制时,d轴和q轴都要利用,所以在速度环需要有两个指令的输出。

下面以正向Clark变换和Park变换,来计算如何进行坐标变换的:

image.png

Clark变换

我们设定U和α轴一致,并假设k为三相与二相的矢量振幅比系数。通过上面图示我们可以得到:

α = k{ U - 1/2V - 1/2W}

β = k{ sqrt(3)/2V - sqrt(3)/2W }

由于三相平衡,我们可以有:

U + V + W = 0

α = U

带入上式可以得到: k = 2/3

所以β = 1/sqrt(3)*(V-W) = 1/sqrt(3)*(U+2V)

image.png

Park变换

我们假设αβ轴与dq轴之间有着θ的角度,把αβ分解到dq轴上,再利用三角公式可以得到:

d = αcosθ + βsinθ

q = -αsinθ + βcosθ

旋转坐标与静止坐标的逆变换同上述一样,这里就省略了。

上面我们聊了坐标变换与矢量控制结构,矢量控制的目的是控制伺服的同时,使电流与电压的位相一致进而提高电力效率和电机转矩的效率。下面我们再来了解下包括矢量控制在内的伺服控制结构。

image.png

上述结构可以简化为以下:位置控制环,速度控制环,矢量(电流)控制环。

image.png

浅析了交流电机的矢量控制,实际利用变频器的交流电机控制中,由于外乱,温度,高频等等因素的影响,使得电机控制算法越来越复杂,精度越来越高,但我们只要掌握了上述最基本的方法,有助于理解其他发展算法。


1分不嫌少!


楼主最近还看过


热门招聘
相关主题

官方公众号

智造工程师