发表于:2010-05-12 09:57:49
楼主
英威腾变频器用于水泥行业风机变频节能改造的方案
一、 概述
在水泥行业的立窑、回转窑风机这样的设备,耗电量极大,起动电流很高,要求变压器有足够大的富余量,同时用电动阀门、挡风板等装置来调节风量,在风道系统设计时,为满足生产环境的最大要求,必须留有余量,因此风机的风量和压力往往偏大,功率的偏大设计必然造成能量的浪费。
在传统的情况中,都是采用阀门来调节风量的,有些也采用旁通阀或者回流阀来解决流量和压力余量过大的问题,这些方法都存在着很大的能量消耗,很多的风机有30~70%的能量是消耗在调节阀的压降上的,不仅造成电能的浪费,工作效率低,而且开动阀门时,还发出啸声和振动,经常发生事故。
近几年来变频技术的出现,彻底改变了这一状况,实践证明在风机的系统中接入变频系统,利用变频技术改变电机转速来调节风量和压力的变化用来取代阀门控制风量,能取得明显的节能效果。
二、 风机采用变频调速的优点:
1、宽电网电压:±20%电网电压,从容应付不同的电网状况;
2、全新的CPU硬件控制平台,控制性能大幅提升;实现恒转矩提升,不会因为网波动影响负载提升情况。
3、可以实现电机无级调速,电流冲击小,加、减速过程平滑,大大减轻了机械冲击的强度
4、易于与外部控制设备接口相结合,实现现场灵活的控制方式。
5.节能效果显著,尤其是在低速段节能效果十分明显。
三、 变频器的选用:
用户风机型号规格为95KW/110KW/132KW。相应地选用INVT无矢量式CHF提升机变频器110KW/132KW/160KW 。
四、 节能原理
立窑、回转窑上的风机的运行工况由立窑、回转窑的负荷情况决定,根据流体力学理论,电机轴功率P和风量Q、压力H之间的关系为:
P=K*H*Q/η
其中K为常数;
η为效率。
它们与转速N之间的关系为:
Q1/Q2=N1/N2
H1/H2=(N1/N2)2
P1/P2=(N1/N2)3
图中曲线1(图1)为风机在恒速下压力H和流量Q的特性曲线,曲线2是管网风阻特性(阀门开度为100%)。假设风机在设计时工作在A点的效率最高,输出风量Q1为100%,此时的轴功率P1=Q1*H1与面积AH10Q1成正比。根据工艺要求,当风量需从Q1减少到Q2(例如70%)时,如采用调节阀门的方法相当于增加了管网阻力,使管网阻力特性变到为 2
曲线3,系统由原来的工况A点变到新的工况B点运行,由图中可以看出,风压反而增加了,轴功率P2与面积BH20Q2成正比,减少不多。
如果采用变频调速控制方式,将风机转速由N1降到N2,根据风机的比例定律,可以画出在转速N2下压力H和流量Q特性如曲线4所示,可见在满足同样风量Q2的情况下,风压H3将大幅度降低,功率P3(相等于面积CH30Q2)也随着显著减少,节省的功率△P=△HQ2与面积BH2H3C成正比,节能的效果是十分明显的。
由流体力学可知,风量Q与转速的一次方成正比,风压H与转速的平方成正比,轴功率P与转速的立方成正比,当风量减少,风机转速下降时,起功率下降很多。
例如风量下降到80%,转速也下降到80%时,则轴功率下降到额定功率的51%;如风量下降到50%,功率P可下降到额定功率的13%,当然由于实际工况的影响,节能的实际值不会有这么明显,即使这样,节能的效果也是十分明显的。
因此在有风机、水泵的机械设备中,采用变频调速的方式来调节风量和流量,在节能上是一个最有效的方法。
五、 INVT变频器介绍:
INVT提升机变频器采用西门子IGBT作为主回路功率器件,由微处理器实现全数字化控制。其控制软件专门为提升机类负载设计,充分考虑了提升机实际运行中的各种特殊要求,采用各种措施保证系统的安全运行,并且可以设置多种参数以满足提升机在不同工况下运行的需要。
六、INVT变频器主要功能:
1、回馈制动:变频器采用能量回馈单元将再生能量回馈给电网。
2、能耗制动
能耗制动单元可单独使用,也可以与能量回馈单元配合使用。
3、直流制动
主令控制器给出“正转”或“反转”命令后,如果没有给出“松闸”信号,变频器会在电机上施加直流制动转矩,确保松开制动闸过程中重车不下滑。在给出“松闸”信号后,变频器开始运行。制动油泵开启后,若不小心松开制动闸触动“松闸”行程开关.
变频器接收到“松闸”信号,同时在电机上施加直流制动转矩,确保重车不下滑。
当重车在井筒中间停车时,变频器由高速至停机后,随之施加直流制动转矩使电机停止转动,当机械制动起作用后,方去掉直流制动,使重车靠机械抱闸的作用停止。
4.自动减速:
变频器接收到系统给出的减速信号后,启动机内的减速程序,按照设定要求将提升机的运行速度逐渐降低。
5、多段速控制
变频器内部预置了多段速度控制,分别对应于变频器不同的运行频率,以适应控制系统对提升机不同运转速度的要求。
各速度段对应频率可以分别设置,以满足各种工况运行需要。
6、紧急停车
变频器提供了紧急停车信号输入端子,急停信号动作后,变频器立即停止输出,电机处于自由运转状态,然后依靠机械制动装置停车。
七、变频器端子接口图: 八、自动控制系统功能简介:
风机变频控制系统采用就地变频运行和远程控制(可手操,也可接收控制系统的通讯和控制指令)的方式对风机进行调速及控制。变频器一般安装在控制柜内,系统原有的自耦降压启动装置仍然保留。 系统在变频器输出侧加装双向转换刀闸或电气旁路,如变频器需要维护检测或出现故障时可人工或自动将风机切换至原自耦降压启动装置工频运行,这样可充分保证系统可靠不间断运行。
下图为风机变频控制系统原理示意图:
九、系统可靠性分析:
水泥设备变频控制系统的可靠性取决于系统内所有执行机构、强弱电回路控制器件、显示及控制仪器仪表、控制软件的性能、电线电缆的质量和相互匹配性能。本公司采用的所有电气元器件、组态软件、智能仪表和执行机构均为国内外知名品牌,产品制造体系均已通过了国际和国内 ISO9001认证,其可靠性得到市场的广泛认可。通过大量的水泥行业业绩分析,本公司所选用的产品和系统使用寿命一般在10年以上。
由于变频控制系统的自动化程度较高,变频器又是精密电力电子产品,其对工作环境的要求较为严格。系统对外部环境的大致要求如下:环境温度:-10℃~50℃;湿度:25%~90RH(无凝结);振动:5.9m/s2(0.6G) 10~55Hz;无刺激腐蚀性气体;无灰尘;无静电;海拔高度低于1000米(注:如使用现场海拔高度高于1000米,海拔高度每高1000米应将变频器的功率放大一个等级)等。
综上所述,只要正常生产过程中电动阀门的开度在85%以下,在安装节能系统之后,我们预计节能率应在30%以上。同时节能系统还具有以下优点:
1、采用闭环控制系统,可靠性,精确度,稳定性都有很大提高。
2、实现电机软起动,消除电机起动电流的冲击,延长机械设备的使用寿命。
3、运行平稳,减低噪音,改善工作环境。