仪器仪表详述
仪器仪表是指用以检出、测量、观察、计算各物理量、物质成分、物性参数等的器具或设备。真空检漏仪、压力表、测长仪、显微镜、乘法器等均属于仪器仪表。广义来说,仪器仪表也可具有自动控制、报警、信号传递和数据处理等功能。
仪器仪表能改善、扩展或补充人的官能。人们用感觉器官去视、听、尝、摸外部事物,而显微镜、望远镜、声级计、酸度计、高温计等仪器仪表可改善和扩展人的这些官能。另外,有些仪器仪表如磁强计、射线计数计等可感受到的物理量。还有些仪器仪表可以超过人的能力去记录、计算和计数,如高速照相机 、计算机等。
简史 仪器仪表发展已有悠久的历史。据《韩非子•有度》记载,中国在战国时期已有了利用天然磁铁制成的指南仪器,称为司南。古代的仪器在很长的历史时期中多属用以定向、计时或供度量衡用的简单仪器。17~18世纪,欧洲的一些物理学家开始利用电流与磁场作用力原理制成简单的检流计,利用光学透镜制成望远镜,奠定了电学和光学仪器的基础,用于测量和观察的各种仪器遂逐渐得到发展。19世纪到20世纪,工业革命和现代化大规模生产促进了新学科和新技术的发展,后来又出现了电子计算机和空间技术等,仪器仪表因而也得到迅速的发展。现代仪器仪表已成为测量、控制和实现自动化必不可少的技术工具。
分类 仪器仪表是多种科学技术的综合产物,品种繁多,使用广泛,而且不断更新,有多种分类方法。按使用目的和用途来分,主要有量具量仪、汽车仪表、拖拉机仪表、船用仪表、航空仪表、导航仪器、驾驶仪器、无线电测试仪器、建材测试仪器、地震测试仪器、大地测绘仪器、水文仪器、计时仪器、农业测试仪器、商业测试仪器、教学仪器、医疗仪器、环保仪器等。属于机械工业产品的仪器仪表有工业自动化仪表、电工仪器仪表、光学仪器、分析仪器、实验室仪器与装置、材料试验机、气象海洋仪器、电影机械、照相机械、复印缩微机械、仪器仪表元器件、仪器仪表材料、仪器仪表工艺装备等13类。它们通用性较强,批量较大,或为仪器仪表工业所必需的基础。
各类仪器仪表按不同特征,例如功能、检测控制对象、结构、原理等再分为若干小类或子类。工业自动化仪表按功能右分为检测仪表、显示仪表、调节仪表和执行器等。其中检测仪表按被测物理量又分为温度测量仪表、压力测量仪表、流量测量仪表、物位测量仪表和机械量测量仪表等。温度测量仪表和机械量测量仪表等。温度测量仪表按测量方式又分为接触式测温仪表和非接触式测温仪表。接触式测温仪表又分为热电式、膨胀式、电阴式等。其他各类仪器仪表的分类法大体类似,主要与发展过程、使用习惯和有关产品的分类有关。仪器仪表在分百炼成钢方面尚无统一的标准,仪器仪表的命名也存在类似情况。
性能 衡量仪器仪表性能的主要技术指标有精确度、灵敏度、响应时间等。精确度表示仪表测量结果与被测量真值的一致程度。仪器仪表的精确度常用精确度等级来表示,例如0.1级、0.2级、0.5级、1.0级、1.5级等。0.1级表仪表总的误差不超过±1.0%范围。精确度等级数小,说明仪表的系统误差和随机误差都小,也就是这种仪表精密。灵敏度表示当被测的量有一个很小的增量时与此增量引起仪表示值增量之比,它反映仪表能够测量的最小被测量。响应时间是指仪表输入一个阶跃量时,其输出由初始值第一次到达最终稳定值的时间间隔,一般规定以到达稳定值的95%时的时间为准。此外,还有重复性、线性度、滞环、死区、漂移等性能技术指标。
发展趋势 科学技术的进步不断对仪器仪表提出更高更新的要求。仪器仪表的发展趋势是不断利用新的工作原理和采用新材料及新的元器件,例如利用超声波、微波、射线、红外线、核磁共振、超导、激光等原理和采用各种新型半导体敏感元件、集成电路、集成光路、光导纤维等元器件。其目的是实现仪器仪表的小型化,减轻重量、降低生产成本和更便于使用与维修等。另一重要的趋势是通过微型计算机的使用来提高仪器仪表的性能,担高仪器仪表本身自动化、智能化程度和数据处理能力。仪器仪表不仅供单项使用,而且可能过标准接口和数据通道与电子计算机结合起来,组成各种测试控制管理综合系统,满足更高的要求。
压力单位换算方法
压力单位换算方法
1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI
2. 1KPa=0.01公斤=0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O
3. 1MPa=1N/mm2
14.5psi=0.1Mpa
1bar=0.1Mpa
30psi=0.21mpa,7bar=0.7mpa
现将单位的换算转摘如下:
Bar---国际标准组织定义的压力单位。
1 bar=100,000Pa
1Pa=F/A,
Pa: 压力单位, 1Pa=1 N/㎡
F : 力 , 单位为牛顿(N)
A: 面积 , 单位为㎡
1bar=100,000Pa=100Kpa
1 atm=101,325N/㎡=101,325Pa
所以,bar是一种表压力(gauge pressure)的称呼。
1Kg/c㎡=98.067KPa =0.9806bar
1bar=1.02Kg/ c㎡
压力单位:
英制(IP) psi ,psf ,in.Hg ,inH2O
公制(metric) Kg/㎡, Kg/ c㎡ ,mH2O
ISO公制(ISO metric) Pa , bar ,N
S型热电偶知识
S型热电偶(铂铑10-铂热电偶)
铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.02mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
铂铑10-铂热电偶优点是准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
什么是一次仪表
一次仪表是自动检测装置的部件(元件)之一。带有感受元件,用以感受被测介质参数的变化。或具有标尺,指示读数;或没有标尺,本身不指示读数。
在生产过程中,对测量仪表往往采用按换能次数来定性的称呼,能量转换一次的称一次仪表,转换两次的称二次仪表。以热电偶测量温度为例,热电偶本身将热能转换成电能,故称一次仪表,若再将电能用电位计(或毫伏计)转换成指针移动的机械能时,进行第二次能量转换就称为二次仪表。换能的次数超过两次的往往都按两次称呼,如孔板测量流量,孔板本身为一次仪表,差压变送器没有称呼,而指示仪表则叫做二次仪表,用以指示、记录或积算来自一次仪表的测量结果。
仪器仪表分类
一、工业自动化仪表和控制系统.这在国外一般简称为PA、FA.PA叫过程自动化,FA叫工厂自动化.在过程自动化和工厂自动化里所用的仪表和控制系统都属于这一类,分析仪器、电工仪器仪表有些部分也属于这一类。如热电偶、压力变送器等。
二、科学测试仪器.就是分析仪器、试验机、光学仪器、测绘仪器等等.第一类仪器仪表是在生产线上用的,与生产线连在一块.而科学测试仪器是独立的,它只是在做试验的时候把样品拿到实验室用的.因此,与第一类很好区别。
三、常用仪器仪表.这主要指的是供应用仪表及其他通用仪器.供应用仪表国家标准是两年前才拿出来的,我们平日里接触的也很多,比如家用电度表、煤气表等.还有一些常用的我们也把它抽出来归为这一类,像衡器、医疗仪器、计时仪器和部分常用的光学仪器。
四、专用仪器仪表.这类实际上是专门供某一领域用的,比如汽车、摩托车用的仪表上升就很快,这就有了汽车仪表、摩托车仪表等等,照此还可以推广到农林牧渔等领域 。
磁性浮子式液位计
磁性浮子式液位计又叫磁翻板液位计或磁翻柱液位计,是玻璃板、玻璃管液位计的升级换代产品。就地显示无须电源,显示部分和介质完全隔离,不会因介质污染显示条而使观测受到影响。同时又具有玻璃板液位计不具备的特点。如不会担心因温度或压力产生破裂,可捆绑磁性开关,并且可根据用户需要调节开关点位置,可根据需要安装捆绑式液位变送器,输出 4~20mA 信号。从而实现远距离检测或控制。
磁性浮子式液位计是以磁性浮子为感应元件,并通过磁性浮子与显示色条中磁性体的耦合作用,反映被测液位或界面的测量仪表。
磁性浮子式液位计和被测容器形成连通器,保证被测量容器与测量管体间的液位相等。当液位计测量管中的浮子随被测液位变化时,浮子中的磁性体与显示条上显示色标中的磁性体作用,使其翻转,红色表示有液,白色表示无液,以达到就地准确显示液位的目的。
就地显示磁性浮子式液位计具有显示直观醒目、不需电源,安装方便可靠,维护量小,维修费用低的优点,是玻璃管,玻璃板液位计的升级换代产品。可广泛应用于石油,化工,电站,制药,冶金,船舶工业,水/污水处理等行业的罐,槽,箱等容器的液位检测。
用户还可根据工程需要,配合磁控液位计使用,可就地数字显示,或输出4~20mA的标准远传电信号,以配合记录仪表,或工业过程控制的需要。也可以配合磁性控制开关或接近开关使用,对液位监控报警或对进液出液设备进行控制。
液位开关
液位开关,顾名思义,就是用来控制液位的开关,对我们来说,最熟悉的应用莫过于其在全自动洗衣机中的应用。大家都知道全自动洗衣机只需要我们插上电源,接上水龙头就可以了。那洗衣机是如何知道加了多少水,该加多少水呢,这就要依靠液位开关了,它来控制阀门,使得水位到达合适的位置,以达到最好的洗涤效果。液位开关种类很多,考虑到各种因素,洗衣机中一般采用压力式水位开关,它装在洗涤缸的上部,它有一根下端开口的气管通到缸底,进水时管里的空气被封闭在里面出不来,就形成比外界稍高的压力。水位越高压力越高,这样根据压力就可间接测知水位。而压力的测量仍然用弹性元件,靠元件的变形带动触点完成通断动作。
这种测液位的方法叫做“静压法”,在工业中用的不少。但更常用的也是更直接的方法是“浮子法”,相信大家都见过钓鱼吧,那钓鱼线绑的都有浮子,浮子漂在水面上,当鱼咬到鱼饵时,浮子会一上一下的跳动,此时我们就可以拉线了。但工业中用的是更大的浮子,实际上就是一个带杆的球。水涨船高是人所共知的常识,工业上早就利用浮子测量水塔中的水位了。因为水塔有几层楼高,如果用人爬上去观察,那多麻烦。只要用绳索通过滑轮把水面上的浮子和水塔外的重块连起来,就可以在地面上抬头看重块在标尺上的位置,从而知道塔里还有多少水。这是极其简单而又立竿见影的办法。
靠浮子位移带动触点通断以构成液位开关也很容易,比方说用个精巧的小开关(这样的开关叫做“微动开关”),装在像厕所水箱那种带杆的浮子一端,再把这套装置安在容器的某个高度上。当浮子升到这个高度时,浮子的杆压下开关不就发出通断信号了吗?当然这是可以的,而且市场上也有这样的成套产品。但还有更简单易行的办法,买一个小型磁浮子液位开关装上就行了。
浮子密度计就是这样的仪器,它是个用玻璃管做成的简单仪器。用它我们就可以方便地测出各种液体的密度了。
本安与隔爆的区别
本安与隔爆型控制柜通常都安装在安全区。本质安全型防爆技术通常采用PLC控制系统,柜内配备安全栅,将危险区返回的信号线经过安全栅处理后再接入PLC输入/输出模块。目前国内通常对PLC输入信号采用本安型防爆技术,可将危险区的输入电流限制在2mA以下,因为电流很小,从本质上讲是安全的。
而PLC输出信号因为价格和其它因素,通常采用隔爆型防爆技术,输出信号线通常采用铠装电缆,穿入水煤气管,接入隔爆型防爆电器,例如防爆电机等,安装中要求从控制柜到最终设备之间都要进行密封处理,将电缆与危险区进行隔离。
隔爆型与本安型是两种不同的防爆电器,前者内部可能有燃爆源(如灯泡)但采取隔爆措施达到安全目的,后者不会达到爆燃能量(电压不高于 12 V,电流不大于 100mA,比如热电阻,属于本质安全型)。虽然如此,防爆电器通常在安全场合和非安全场合分界处都安装有安全栅。压力变送器基于不同工作原理也可以有以上两种区别。 防爆的等级根据使用场合选择。
关于压力变送器
压力变送器从一般意义上往往指压力变送器和差压变送器,主要由测压元件传感器、测量电路和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号(4~20mADC),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。
压力变送器根据测压范围可分成一般压力变送器(-100Pa~120MPa)和微差压变送器(0.1~1.5kPa)两种。
压力变送器的主要作用:把压力信号传到电子设备,进而在计算机显示压力,其原理大致是:
如将水压这种压力的力学信号转变成电压或电流(一般是0-5V或者4-20mA)这样的电子信号,压力和电压或电流大小成线性关系,一般是正比关系 所以,变送器输出的电压或电流随压力增大而增大。
压力变送器类型:
以量程范围:微压变送器、压力变送器
以测量方式:差压变送器、压力变送器
以测量要求:绝压变送器、表压变送器、相对表压变送器。
液位变送器和压力变送器是变送器的两个种类。
液位变送器工作原理:
液体中某一点的静压力与该点到液面的距离成正比,即:P=ρgh。其中:P~被测点的压力(压强)、ρ~介质密度、g~重力加速度、h~被测点到液面的高度。
对已确定的被测介质及地点,h、g为常数,故被测点到液面的位置的变化只与被测的ρ压力(压强)有关。
液位变送器分类:
1、浮球式液位变送器
2、浮筒式液位变送器
3、静压式液位变送器
压力变送器和差压变送器单从名称上讲测量的是压力和差压(两个压力的差),但它们可以间接测量的量却很多。如压力变送器,除可以测量压力外,还可以测量设备内的液位。在常压容器内测量液位时,需要一台压力变送器即可。
当测量受压容器的液位时,可考虑用两台压力/差压变送器,即测量下限一台,测量上限一台,它们的输出信号进行减法运算,即可测出液位,这时一般选用差压变送器。在容器内液位与压力值不变的情况下它还可以用来测量介质的密度。
压力变送器的测量范围可以做的很宽,从绝压0开始可以到一百多兆帕(一般情况)。差压变送器除了测量两个被测量压力的差压值外,它还可以配合各种节流元件来测量介质流体的
流量,可以直接测量受压容器的液位和常压容器的液位以及压力和负压。
压力变送器制作的结构上来分有普通型和隔离型。
普通型压力/差压变送器的测量膜盒为一个,它直接感受被测介质的压力或差压;
隔离型的测量膜盒接受到的是一种稳定液(一般为硅油)的压力,而这种稳定液是被密封在两个膜片中间,直接接受被测压力的膜片为外膜片,原普通型膜盒的膜片为内膜片,当外膜片上接受压力信号时通过硅油的传递原封不动的将外膜片的压力传递到了普通膜盒上,从而可以测出外膜片所感受到的压力。隔离型压力/差压变送器主要是针对特殊的被测量介质设计和使用的,如果被测介质离开设备后会产生结晶,而使用普通型压力/差压变送器需要取出介质,会将导压管膜盒室堵塞使其不能正常工作,所以必须选用隔离型。隔离型变送器通常作成法兰式安装,即在被测设备上开口使变送器安装后它的感应膜片是设备壁的一部分,这样它不会取出被测介质,一般也不会造成结晶和堵塞。当被测介质需求结晶温度较高时,可选用将膜片凸出的结构,这样可将传感膜片插入到设备内部,压力变送器,这样测量是有保障的,即选用插入式法兰变送器。
隔离型变送器有远传型和一体型之分。远传型即外膜盒与测量膜盒之间用加强毛细管连接,一般毛细管为3~5米,这样外膜盒装在设备上,内膜盒及变送器可以安装在便于维护的安装支架上;另一种形式是外膜盒与变送器做成一体直接由法兰安装在设备上。对于隔离型压力变送器它还可以作成螺纹连接型,压力变送器即外膜盒或外弹性元件可在安装螺纹的前面,只要在被测设备上焊接上内螺纹凸台,便可将变送器直接拧到设备上,安装非常方便。隔离型压力/差压变送器的制作复杂,材质要求也较高,所以它的价格通常是普通型的3~4倍。
在诸类仪表中,变送器的应用最广泛、最普遍,变送器大体分为压力变送器和差压变送器。变送器常用来测量压力、差压、真空、液位、流量和密度等。变送器有两线制和四线制之分,两线制变送器尤多;有智能和非智能之分,智能变送器渐多;有气动和电动之分,电动变
送器居多;另外,按应用场合有本安型和隔爆型之分;按应用工况变送器的主要种类如下:
低(微)压/低差压变送器;
中压/中差压变送器;
高压/高差压变送器;
绝压/真空/负压差压变送器;
高温/压力、差压变送器;
耐腐蚀/压力、差压变送器;
易结晶/压力、差压变送器。
变送器的选型通常根据安装条件、环境条件、仪表性能、经济性和应用介质等方面考虑。实际运用中分为直接测量和间接测量;其用途有过程测量、过程控制和装置联锁。常见的变送器有普通压力变送器、差压变送器、单变送器、双变送器、插入式变送器等。
如何选用各类变送器
传感器和变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。下面简单地介绍了各类变送器的特点,供大家参考。
一、一体化温度变送器
一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。热电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。
一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。一体化温度变送器的输出为统一的4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。
二、压力变送器
压力变送器主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。其测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。压力变送器根据测压范围可分成一般压力变送器(-100Pa~120MPa)和微差压变送器(0.1~1.5kPa)两种。
三、液位变送器
1、浮球式液位变送器
浮球式液位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。一般磁性浮球的比重小于0.5g/cm3,可漂于液面之上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。该变送器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最大电流不超过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。
2、浮简式液位变送器
浮筒式液位变送器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。浮筒式液位变送器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。它在工作时可以通过现场按键来进行常规的设定*作。
3、静压或液位变送器
该变送器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,最后以4~20mA或0~10mA电流方式输出。
四、电容式物位变送器
电容式物位变送器适用于工业企业在生产过程中进行测量和控制生产过程,主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。电容式液位变送器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为1~5V、0~5V、0~10mA等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。变送器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。
五、超声波变送器
超声波变送器分为一般超声波变送器(无表头)和一体化超声波变送器两类,一体化超声波变送器较为常用。一体化超声波变更新器由表头(如LCD显示器)和探头两部分组成,这种直接输出4~20mA信号的变送器是将小型化的敏感元件(探头)和电子电路组装在一起,从而使体积更小、重量更轻、价格更便宜。超声波变送器可用于液位、物位的测量和开渠、明渠等流量测量,并可用于测量距离。
六、锑电极酸度变送器
锑电极酸度变送器是集PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。 锑电极酸度变送器中的固体模块电路由两大部分组成。为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。第二部分是测量变送器电路,它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。将放大后的PH信号与温度被偿信号进行迭加后再差进转换电路,最后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。
七、酸、碱、盐浓度变送器
酸、碱、盐浓度变送器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种变送器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。酸、碱、盐浓度变送器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。当被测溶液流入专用电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。在有恒压交变电流流过时,其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。因此只要测出溶液电流,便可算出酸、碱、盐的浓度。酸、碱、盐浓度变送器主要由电导池、电子模块、显示表头和壳体组成。电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。
八、电导变送器
它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化变送器),可在线连续检测工业过程中水溶液的电导率。由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。电导变送器的结构和电路与酸、碱、盐浓度变送器相同。
九、智能变送器
智能式变送器是由传感器和微处理器(微机)相结构而成的。它充分利用了微处理器的运算和存储能力,可对传感器的数据进行处理,包括对测量信号的调理(如滤波、放大、A/D转换等)、数据显示、自动校正和自动补偿等。微处理器是智能式变送器的核心。它不但可以对测量数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节,以使采集数据达到最佳。由于微处理器具有各种软件和硬件功能,因而它可以完成传统变送器难以完成的任务。所以智能式变送器降低了传感器的制造难度,并在很大程主上提高了传感器的性能。另外,智能式变送器还具有以下特点:
1.具有自动补偿能力,可通过软件对传感器的非线性、温漂、时漂等进行自动补偿。可自诊断,通电后可对传感器进行自检,以检查传感器各部分是否正常,并作出判断。 数据处理方便准确,可根据内部程序自动处理数据,如进行统计处理、去除异常数值等。
2.具有双向通信功能。微处理器不但可以接收和处理传感器数据,还可将信息反馈至传感器,从而对测量过程进行调节和控制。可进行信息存储和记忆,能存储传感器的特征数据、组态信息和补偿特性等。
3.具有数字量接口输出功能,可将输出的数字信号方便地和计算机或现场总线等连接。
热电偶补偿导线详解
1 结构及定义
热电偶补偿导线简称补偿导线,通常由补偿导线合金丝、绝缘层、护套、屏蔽层组成。在一定温度范围内(包括常温)、具有与所匹配的热电偶的热电动势的标称值相同的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。
热电偶与测量装置之间使用补偿导线,其优点有二:1.改善热电偶测温线路的物理性能和机械性能,采用多股线芯或小直径补偿导线可提高线路的挠性,是接线方便,也可调节线路电阻或屏蔽外界干扰;2.降低测量线路成本,当热电偶与测量装置距离很远,使用补偿导线可以节省大量的热电偶材料,特别是使用贵金属热电偶时,经济效益更为明显。
2 术语及符号
2.1 延长型补偿导线
延长型补偿导线又称延长型导线,其合金丝的名义化学成分及热电动势标称值与配用的热电偶相同,用字母“X”附在热电偶分度号之后表示,例如“KX”表示K型热电偶用延长型补偿导线。
2.2 补偿型补偿导线
补偿型补偿导线又称补偿型导线,其合金丝的名义化学成分与配用的热电偶不同,但其热电动势值在0-100℃或0-200℃时与配用热电偶的热电动势标称值相同,用字母“C”附在热电偶分度号之后表示,例如“KC”。不同合金丝可以应用于同一分度号的热电偶,并用附加字母区别,如“KCA”、“KCB”。目前使用不多。
2.3 允差
热电偶补偿导线的允差是由于测量系统中引用了补偿导线而产生的最大偏差,该值用微伏表示,其允差的大小分为精密级和普通级两种。
2.4 符号
S——表示热电特性为精密级补偿导线。普通级补偿导线不标字母;
G——表示一般用补偿导线;
H——表示耐热用补偿导线;
R——表示线芯为多股的补偿导线。线芯为单股的补偿导线不标字母;
P——表示有屏蔽层的补偿导线;
V——表示绝缘层或护套为聚氯乙烯材料(PVC);
F——表示绝缘层为聚四氟乙烯材料;
B——表示护套为无碱玻璃丝材料。
3 补偿导线的分类
3.1 品种
按照补偿导线所匹配的热电偶的品种列于表1。
3.2 规格
补偿导线的线芯型式、线芯股数、线芯标称截面、合金丝直径列于表2。
3.3 允差等级、使用条件分类
补偿导线按照热电特性的允差大小分为精密级和普通级两种;按照使用温度范围分为一般用和耐热用两种。
3.4 结构形式
3.4.1补偿导线的线芯型式分为单股线芯和多股线芯两种,线芯股数列于表2。
3.4.2绝缘层、护套、屏蔽层
一般用补偿导线的绝缘层和护套是以聚氯乙烯为主体材料;耐热用补偿导线的绝缘层是以聚四氟乙烯为主体材料,护套是以聚四氟乙烯或无碱玻璃丝(表面应涂有机硅漆或聚四氟乙烯分散液烧结)为主体材料。
屏蔽层采用镀锡铜丝或镀锌钢丝纺织或用复合铝(铜)带绕包。
3.5 代号
补偿导线产品代号、使用温度范围、绝缘层和护套的主体材料列于表3。
4 技术要求
4.1 绝缘层、护套与屏蔽层
4.1.1补偿导线的线芯绝缘层厚度、护套厚度及最大外径应符合表4。
4.1.2绝缘层
一般用补偿导线的绝缘层表面应平整、色泽均匀、无机械损伤;绝缘层厚度允差为表称厚度的负10%,最薄处的厚度应不小于标称值的90%减0.1mm;绝缘层应经受交流50Hz,电压为4000V的火花实验不击穿,实验机的运行速度应保证绝缘层每点经受电压作用时间不小于0.1s。
耐热用补偿导线绝缘层厚度允差为标称值厚度的负20%,最薄处的厚度应不小于标称值的90%减0.1mm,绝缘线芯外径允许局部放大,但粗大处外径不应超过最大外径值。
4.1.3护套
凡用聚氯乙烯或聚四氟乙烯作护套,其护套应紧密包在线芯的绝缘层上,绝缘层与护套不粘连,表面应平整,颜色均匀。
护套厚度的允许偏差为标称值厚度的负20%,最薄处的厚度应不小于标称值的80%。用玻璃丝纺织的护套,其编织密度应不小于90%。
4.1.4屏蔽层
编织密度不小于80%,断头处经衔接后应修剪整齐;复合铝(铜)带应紧密贴在绝缘层上,不易松脱;屏蔽层的厚度不得大于0.8mm。
4.2 绝缘电阻
当周围空气温度为15-35℃,相对湿度不大于80%时,补偿导线的线芯间和线芯与屏蔽层之间的绝缘电阻每10米不小于5MΩ。
4.3 物理机械性能
一般用补偿导线的绝缘层和护套的物理性能和老化性能应符合表5规定。
4.4 耐热性能
耐热用补偿导线应经受220±5℃历时24小时耐热性能试验后,立即将试样在5倍其直径的圆柱体上弯曲180度后应表面无裂纹,补偿导线的线芯间和线芯与屏蔽层之间的绝缘电阻每米不小于25MΩ。
4.5 防潮性能
耐热用补偿导线应经受环境温度40±2℃,相对湿度95±3%,历时24小时防潮性能试验后,补偿导线的线芯间和线芯与屏蔽层之间的绝缘电阻每米不小于25 MΩ。
4.6 低温卷绕性能
一般用补偿导线应经受-20℃的低温卷绕试验后,用目力观察卷绕在试棒上的试样的绝缘层应无任何裂纹。
表1
名称 型号 配用热电偶 分度号
铜-铜镍0.6补偿导线 SC或RC 铂铑10-铂热电偶
铂铑13-铂热电偶 S或R
铁-铜镍22补偿导线
铜-铜镍40补偿导线
镍铬10-镍硅3延长型导线 KCA
KCB
KX 镍铬-镍硅热电偶 K
铁-铜镍18补偿型导线
镍铬14-镍铬硅延长型导线 NC
NX 镍铬硅-镍硅热电偶 N
镍铬10-铜镍45延长型导线 EX 镍铬-铜镍热电偶 E
铁-铜镍45延长型导线 JX 铁-铜镍热电偶 J
铜-铜镍45延长型导线 TX 铜-铜镍热电偶 T
钨铼3/25补偿型补偿导线
钨铼5/26补偿型补偿导线 WC3/25
WC5/26 钨铼3-钨铼25
钨铼5-钨铼26 WRe3-WRe25
WRe5-WRe26
表2
线芯型式 线芯标称截面mm2 线芯股数 合金丝直径mm
单股线芯
0.2
0.5
1.0
1.5
2.5 1
1
1
1
1 0.52
0.80
1.13
1.37
1.76
多股线芯
0.2
0.5
1.0
1.5
2.5 7
7
7
7
7 0.20
0.30
0.43
0.52
0.41
注:钨铼3/25、钨铼5/26补偿导线的线芯标称截面没有0.2mm2的规格。
表4
使用分类 线芯
标称截面mm2 绝缘层
标称厚度mm 护套
标称厚度mm 补偿导线最大外径mm
单股线芯 多股软线芯
一般用 0.2
0.5
1.0
1.5
2.5 0.4
0.5
0.7
0.7
0.7 0.7
0.8
1.0
1.0
1.0 3.0*4.6
3.7*6.4
5.0*7.7
5.2*8.3
5.7*9.3 3.1*4.8
3.9*6.6
5.1*8.0
5.5*8.7
5.9*9.8
耐热用 0.2
0.5
1.0
1.5
2.5 0.4
0.4
0.4
0.4
0.4 0.3
0.3
0.3
0.3
0.3 2.3*4.0
2.6*4.6
3.0*5.3
3.2*5.8
3.6*6.7 2.4*4.2
2.8*4.8
3.1*5.6
3.4*6.2
4.0*7.3
表5
应用分类 物理机械性能 老化性能
抗拉强度N/mm2 伸长率% 湿度% 时间h 强度变化率%
-20~70℃
-20~100℃ ≥12.5
≥12.5 ≥125
≥125 80±2
135±2 168
168 ±20
±25
温度传感器基础知识
一、温度测量的基本概念
1、温度定义:
温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。
摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。
华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。
热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。
国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。
1990年国际温标:
a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。
b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。
c、ITS-90的定义:
第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。
第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。
第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。
二、温度测量仪表的分类
温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。
三、传感器的选用
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。
(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。
1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。
2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。
3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。
4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。
5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。
6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。
(二) 测温器:
1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。
① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。
② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”
2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。
3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:
① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。
② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
(1).热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。
(2).热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。
标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(3).热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。
四、我国在温控领域的八大进展
我国仪器仪表在实现微型化、数字化、智能化、集成化和网络化等方面紧跟国际发展的步伐,加大具有自主知识产权部分的开发研制及产业化的力度,取得了显著的进展。其中,值得提出的重大科技进展主要包括以下八个方面:
1.先进工业自动化仪器仪表及系统实现了模块化与全数字集成,达到产业化要求,广泛用于钢、电、煤、化、油、交通、建筑、国防、食品、医药、农业、环保等领域,向具有自主知识产权方向迈出了坚实的一步。
2.智能式系列测试仪器与自动测试系统的研究及产业化水平大幅度提高,组建了航空航天测试、机电产品测试、家用电器测试、地震监测、气象探测、环境监测等各行业的自动测试系统。总体水平达到国外先进产品水平,而售价明显低于国外产品。
3.微波毫米波矢量网络分析仪研制成功及批量生产,标志着我国成为继美国之后世界第二个能生产此类高精尖仪器的国家。
4.研究开发出有自己特色的纳米测控及微型仪器,碳纳米管的定向制备及结构与物理性质的探测居世界领先地位。
5.完成完整的电学量子标准和1.5×10-5级国家电能标准装置,使我国电计量标准处于国际先进水平。
6.开展了具有自主知识产权的科学仪器攻关,提升了我国科学仪器的整体水平。
7.建立了产学研相结合、国内外相结合的发展机制,拓宽了科学仪器的应用领域,如开发成功海关防伪票证的光谱仪器,在全国海关推广后,累计查获假票证价值540亿元,为国家挽回巨大经济损失。国产科学仪器的市场占有率由“八五”期间的13%提高到“九五”末期的25%。
8.高强度聚焦超声肿瘤治疗系统研制成功并批量生产,超声医疗仪器在肿瘤无创治疗方面具有国际领先优势。
温度传感器定义
温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。
温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
热电偶基础知识
热电偶是工业上最常用的温度检测元件之一。其优点是:
①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在 回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成
(1)热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家 标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:
① 组成热电偶的两个热电极的焊接必须牢固;
② 两个热电极彼此之间应很好地绝缘,以防短路;
③ 补偿导线与热电偶自由端的连接要方便可靠;
④ 保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。
热电偶的原理及构造
热电偶是工业上最常用的温度检测元件之一。其优点是:
①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成
(1)热电偶的种类
常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶
我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T(即分度号)七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:
① 组成热电偶的两个热电极的焊接必须牢固;
② 两个热电极彼此之间应很好地绝缘,以防短路;
③ 补偿导线与热电偶自由端的连接要方便可靠;
④ 保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿
由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。
例如:S型热电偶)铂铑10-铂热电偶
铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.02mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
变送器和传感器有什么区别和联系
传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成,如热电偶。
当传感器的输出为规定的标准信号时,则称为变送器。变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其他信号也有了。一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其他功能:诸如控制,显示等功能的仪表。
传感器和变送器本是热工仪表的概念。传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件。或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源。根据需要还可将模拟量变换为数字量。传感器和变送器一同构成自动控制的监测信号源。不同的物理量需要不同的传感器和相应的变送器。
还有一种变送器不是将物理量变换成电信号,如一种锅炉水位计的“差压变送器”,他是将液位传感器里的下部的水和上部蒸汽的冷凝水通过仪表管送到变送器的波纹管两侧,以波纹管两侧的差压带动机械放大装置用指针指示水位的一种远方仪表。当然还有把电气模拟量变换成数字量的也可以叫变送器。以上只是从概念上说明传感器和变送器的区别。
压力变送器的分类
压力变送器分类主要是为了更好地满足客户要求,其结构不同,所用膜盒也不同。
压力变送器也就是所说通用表压变送器,一侧通大气另一侧接被测压力。用于管道、锅炉等压力的测量。
差压变送器两侧分别接不同的压力,根据压力差来测量液位的高度以及和孔板配合测量管道流量等。
绝压变送器其一侧抽真空,另一侧所受压力就为绝对压力,适用于绝压场合。
微差压变送器选用2E膜盒(0.0-1.5KPA),提高测量小压力的精度。
高静压差压变送器选用高静压膜盒,所谓静压就是当压力变送器两侧所加压力相同时其输出电流应为4.00MA,但普通差压变送器当两侧压力同时增大到25MPA以上其输出难以保证在4.00MA。故高静压差压变送器多用于流量、液位测量且压力较高的场合。
热电阻的原理及构造
热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
1.热电阻测温原理及材料
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。
2.热电阻的结构
(1)精通型热电阻
从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响一般采用三线制或四线制。
(两线制:两根线及传输电源又传输信号,也就是传感器输出的负载和电源是串联在一起的,电源是从外部引入的,和负载串联在一起来驱动负载。 三线制:三线制传感器就是电源正端和信号输出的正端分离,但它们共用一个COM端。 四线制:电源两根线,信号两根线。电源和信号是分开工作的。)
(2)铠装热电阻
铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。
(3)端面热电阻
端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。
(4)隔爆型热电阻
隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。
3.热电阻测温系统的组成
热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点:
①热电阻和显示仪表的分度号必须一致
②为了消除连接导线电阻变化的影响,必须采用三线制接法
热电阻顾名思义,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝、铜丝作的电阻。工业用热电阻一般采用Pt100,Pt10,Pt1000、Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。
如用铂丝做成的热电阻,其分度号称Pt100。就是说它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。
比如用铜丝作的热电阻,分度号Cu50。它在0度时,阻值是50欧姆,100度时是71.400欧姆。
热电阻公式都是Rt=Ro(1+A*t+B*t*t);Rt=Ro[1+A*t+B*t*t+C(t-100)*t*t*t] 的形式,t表示摄氏温度,Ro是零摄氏度时的电阻值,A、B、C都是规定的系数,对于Pt100,Ro就等于100。
分度号定义:代表温度范围,且代表每种分度号的热电偶或热电阻具体多少温度输出多少伏特的电压或者毫伏的电压。