发表于:2006-07-01 16:32:00
楼主
变频调速器的基础知识
维修班
交流变频调速技术是现代电力传动技术重要发展方向,随着电力电子技术,微电子技术和现代控制理论在交流调速系统中的应用,变频交流调速已逐渐取代了过去的滑差调速,变极调速,直流调速等调速系统,越来越广泛的应用于工业生产和日常生活的许多领域。但由于受到使用环境,使用年限以及人为操作上的一些因素,变频器的使用寿命大为降低,同时在使用中也出现了各种各样的故障。
1 .变频器的静态测试结果来判断故障
首先可以对变频器做一个静态的测试,一般通用型变频器大致包括以下几个部分(1)整流电路;(2)直流中间电路;(3)逆变电路;(4)控制电路。
静态测试主要是对整流电路,直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是万用表。 整流电路主要是对整流二极管的一个正反向的测试来判断它的好坏,当然我们还可以用耐压表来测试。 直流中间回路主要是对滤波电容的容量及耐压的测量,我们也可以观察电容上的安全阀是否爆开,有否漏液现象等
来判断它的好坏.功率模块的好坏判断主要是对功率模块内的续流二极管的判断。对于IGBT模块我们还需判断在有触发电压的情况下能否导通和关断。
2.通过变频器的显示来判断故障点的所在
(1) OC.过电流故障 这可能是变频器里面最常见的故障了。首先要排除由于参数问题而导致的故障。例如电流限制,加速时间过短都有可能导致过电流的产生。然后我们就必须判断是否电流检测电路出问题了。以FVR075G7S-4EX为例:我们有时会看到FVR075G7S-4EX在不接电机运行的时候面板也会有电流显示。电流来自于哪里呢?这时就要测试一下它的3个霍尔传感器,为确定那一相传感器损坏,我们可以每拆一相传感器的时候开一次机,看是否会有过流显示,经过这样试验后基本能排除OC故障。
(2) OV.过电压故障 首先要排除由于参数问题而导致的故障。例如减速时间过短,以及由于再生负载而导致的过压等,然后我们可以看一下输入侧电压是否有问题,最后我们可以看一下电压检测电路是否出现了故障,一般的电压检测电路的电压采样点,都是中间直流回路的电压。我们以三肯SVF303为例,它由直流回路取样后(530V左右的直流)通过阻值较大电阻降压后再由光耦进行隔离,当电压超过一定值时,显示“5”过压(此机器为数码管显示)我们可以看一下电阻是否氧化变值,光耦是否有短路现象等。
(3) UV.欠电压 我们首先可以看一下输入侧电压是否有问题,然后看一下电压检测电路,故障判断和过压相同。
4) FU.快速熔断器故障 在现行推出的变频器大多推出了快熔故障检测功能。(特别是大功率变频器)以LG030IH-4变频器为例。它主要是对快熔前面后面的电压进行采样检测,当快熔损坏以后必然会出现快熔一端电压没有,此时隔离光耦动作,出现FU报警。更换快熔就因该能解决问题。特别应该注意的是在更换快熔前必须判断主回路是否有问题。
(5) OH.过热 主要引起原因变频器内部散热不好。我们可以检查散热风扇及通风通道。
(6) SC.短路故障 我们可以检测一下变频器内部是否有短路现象。检测一下内部线路,可能不一定有短路现象,此时我们可以检测一下功率模块有可能出现了故障,在驱动电路正常的情况下,更换功率模块,应该能修复机器。
变频器故障多种多样,第一炼钢车间的维修工接触较晚,而且对变频器的基础知识知之甚少,我们只能在实践中不断总结,摸索出一套快速有效处理变频器故障的办法。
一. 变频器主要原理基本知识 。
三相380V电网电压从变频器的L1, L2, L3输入端输入后,首先要经过变频器的整流桥整流,后经过电容的滤波,输出一大约530V左右的直流电压(这530V也就是我们常用来判断变频器整流部分好坏的最常测试点,当然整流桥最初是要经过断电测试的)然后经过逆变电路,通过控制逆变电路的通断来输出我们想要的合适频率的电压(变频器能变频最主要的就是控制逆变电路的关断来控制输出频率),变频器故障有无数种,好在现在变频器都趋于智能化,一般的故障它自己都能检测,并在控制面版上显示出其代码,用户只需查一下用户手册就能初步判断其故障原因。但有时,变频器在运行中或启动时或加负载时,突然指示灯不亮,风扇不转,无输出。这时我们初学者就不知该怎办了。其实很简单的,我们只要把变频器的电源断了。断电测试一下它的整流部分与逆变部分,大多情况下就能知其故障所在了。这里有一点要千万注意,断电后不能马上测量,因变频器里有大电容存有几百伏的高压,一定要等上十几分钟再测,这一点千万要注意。 变频器上电前整流桥及逆变电路的测试。具体测量方法如下:
找到变频器直流输出端的“+”与“-”,然后将万用表调到测量二极管档,黑表笔接“+”,红表笔分别接变频器的输入端L1, L2, L3端,整流桥的上半桥若是完好,万用表应显示0.3……的压降,若损坏则万用表显示“1”过量程。相反将红表笔接“-”黑表笔分别接L1, L2, L3端应得到上述相同结果,若出现“1”则证明整流桥损坏。 然后测试其逆变电路,方法如下:将万用表调到电阻×10档将黑表笔接“+”红表笔接变频器的输出端U, V, W应有几十欧的阻值,反向应该无穷大。反之将红表笔接到“-”重复上述过程,应得到同样结果。 这样经过测量在判断变频器的整流部分与逆变部分完好时,上电测量其直流输出端看是否有大约530V高压,注意有时万用表显示几十伏大家以为整流电路工作了,其实它并没工作,它正常工作会输出530V左右的高压,几十伏的电压是变频器内部感应出来的。若没530V左右高压这时往往是电源版有问题。有的变频器就是由于电源版的一小贴片电阻被烧毁,导致电源板不工作,以致使变频器无显示无输出,风扇不转,指示灯不亮。 这样就可以初步判断出变频器是哪部分出现了故障,然后拆机维修时就可以重点测试怀疑故障部分。
二. 技术基础
(一) 基本术语篇
1, Electronic Line Shafting---ELS,许多工业生产线都由多台机器组成,各轴之间具有运动关系。过去是使用机械机构连接各轴,如果使用电子方式连接各轴,各州各有其驱动马达,则称为“Electronic Line Shafting”(ELS)。2, Auto Tuning(自动调校), 常见于磁束向量型变频器的一种技术,能自动监测(找出)马达的参数,如转差频率/场电流/转矩电流/定子阻抗/转子阻抗/定子感抗/转子感抗等.有了这些参数后才能作[专据估算]及[转差(滑差)补偿].也因为此技术,在无编码器的运转下仍能获得良好的运转精度.
3, 无编码器运转,在速度控制上,与旧式variable frenquency变频器的开回路比较,磁束向量型变频器内部由速度观测计算功能达成闭回路.马达侧不用装编码器也能达到良好的速度精度.无编码器运转有如下好处:1),配线精省;2),不必担心RF杂讯对编码器低电压信号的影响;3),在多震动的场合不用担心编码器的高故障率.
4, 变频器的矢量控制 在AC马达中,转子由定子绕组感应电流产生磁场.定子电流含两部分.一部分影响磁场,另一部分影响马达输出转矩.要使用AC马达在需要速度与转矩控制的场合,必须能够把影响转矩的电流分离控制,而磁束矢量控制就能够分离这两部分进行独立控制.(具有大小及方向的物理量称为矢量)
5, Field WeakeningField Weakening线路可用以减弱马达的场电流,改变与磁场的平衡关系,使马达高于基本转速运转
6, 定转矩应用 所需转矩大小不因速度而变的场合,常用到[定转矩应用].如传送带等负载.[定转矩应用]通常需要较大的起动