对接焊头广泛应用于输送气、液介质的管道中,如果接头内表面有很高拉应力时,就很容易引起应力腐蚀开裂。本文主要采用盲孔法对钢管对接焊接头进行残余应力测量,分析不同管径、不同焊接层数以及预热温度对管道接头残余应力分布影响,了解其残余应力分布特征。
焊接试样
管材为12CrIMoV,壁厚5mm、10mm,直径133mm,长2*240mm,接头坡口角度为60°,直流手工电弧焊。焊接试样分三种情况:
1. 管子壁厚5mm,直径分别为50mm、100mm、300mm、500-2000mm单道单面一次焊透。
2. 壁厚10mm,焊缝层数为4层,分别在室温20℃和预热200℃下进行焊接。
3. 壁厚10mm,室温20℃,分别焊1层、4层、5层,保持总热输入相同。
测试方法及仪器
采用盲孔法测试残余应力。其原理是:在工件的应力场中钻小孔,被测点的应力的平衡受到破坏,应力得到释放,小孔周围的应力将重新分布调整,利用事先贴在孔周围的应变计测得孔附近的弹性应变增量,就可以根据弹性力学原理计算出小孔处的残余应力,这种方法钻孔直径和深度都很小,不会影响被测构件的正常使用。
仪器采用聚航科技的JHMK多点残余应力测试系统,由JHYC静态应变仪和JHZK钻孔装置组成。采用半桥连接,一片为工作片,一片为温度补偿片。
应变片的布置:在焊缝及其附近处,沿轴向和周向每隔30mm粘贴应变片;远离焊缝较远处每隔60mm粘贴应变片,同一距离测点各布置两片应变片,以防数据丢失。由于直径不同,不同钢管测点也不同。
测试结果
试验发现,周向应力和纵向应力明显大于径向应力。因此,本文只讨论前两种应力。图1a、图1b分别表示壁厚5mm,不同直径管子接头内部周向应力σθ和σz轴向应力分布情况。图2a和图2b表示σθ和σz外部分布情况,图3和图4分别表示预热和不预热4层焊缝时内部与外部的σθ和σz分布情况。图5表示不同焊接层数时管接头内、外部位σθ分布情况。
残余应力特征分析
直径对残余应力分布的影响
从图1和图2可得出以下结论
1. 管接头处内壁应力水平高于外部,焊缝内部及其附近的σθ和σz是拉应力,而外部的σz是压应力。小直径管外部σθ很低。
2. 虽然小直径管子接头残余应力很低,但内、外应力差值较大。随管径增大,内、外部位的最大σθ均逐渐趋向于屈服极限,应力分布趋近于平板对接焊的残余应力分布。小直径管接头内部残余拉应力是产生应力腐蚀的主要因素。
多层焊及预热对残余应力特征的影响
从图3至图5可得出以下结论
1. 内表面焊缝及其附近的σθ是拉应力,通常高于σz,甚至达到屈服极限。外表面的σθ比内表面的σθ低很多,其值很小,甚至为压应力。外表面的σz是压应力。
2. 预热200℃可以减小内、外表面的应力,但效果不是很明显。
3. 若热输入相同,减少焊接层数可改善残余应力的分布。
楼主最近还看过