变频器为什么要连接制动电阻?怎么计算? 点击:344 | 回复:0



今生缘

    
  • [版主]
  • 精华:43帖
  • 求助:20帖
  • 帖子:4757帖 | 10148回
  • 年度积分:75
  • 历史总积分:111144
  • 注册:2011年3月02日
发表于:2019-12-05 17:29:53
楼主

从变频器的工作原理可知,改变电机工作电源频率需要经过整流-->逆变的过程,制动电阻就处在整流后的位置,见下图⑧和⑨之间的电阻:


那么制动电阻是起什么作用呢?

下图示例中:

当电机处在减速阶段时,电机开始向变频器反馈能量,即P-brake;

然后直流侧电压开始升高,当电压升高到一定阈值后,制动斩波器(BRC)处于ON的状态,此时反馈的能量开始释放到制动电阻上,即Pv

由于多余的能量通过制动电阻以热能的形式消耗掉,因此直流侧电压开始降低,当降低到一定阈值后,制动斩波器(BRC)处于OFF的状态,制动电阻不再工作。

以上就是制动电阻工作的原理及流程。


一般情况下,由于各厂家的设计理念不同,直流侧的电容在设计上可能存在差异。

有些产品电容大,在工作时,能够吸收较多的能量,当工况不十分严苛时,可能就不需要制动电阻也能正常工作。

有些产品电容小,无法吸收反馈能量,此时加制动电阻就十分必要的,像SEW的MDX61B或者MC07B不加制动电阻时,如果报警F04或者F07,很有可能就是因为没有制动电阻的原因。

制动电阻的作用

1、保护变频器不受再生电能的危害

电机在快速停车过程中,由于惯性作用,会产生大量的再生电能,如果不及时消耗掉这部分再生电能,就会直接作用于变频器的直流电路部分,轻者,变频器会报故障,重者,则会损害变频器;制动电阻的出现,很好的解决了这个问题,保护变频器不受电机再生电能的危害。

2、保证电电源网络的平稳运行

制动电阻将电机快速制动过程中的再生电能直接转化为热能,这样再生电能就不会反馈到电源电网络中,不会造成电网电压波动,从而起到了保证电源网络的平稳运行的作用。

变频器配制动电阻,主要是想通过制动电阻来消耗掉直流母线电容上的一部分能量,避免电容的电压过高。理论上如果电容存储的能量多,可以用来释放出来驱动电机,避免能量浪费,但是电容的容量有限,而电容的耐压也是有限的,当母线电容的电压高到一定程度,就可能会损坏电容了,有些还可能损坏IGBT,所以需要及时通过制动电阻来释放电,这种释放,是白白浪费掉的,是一种没有办法的做法。

母线电容是个缓冲区,容纳能量有限

三相交流电全部整流后,接入电容,满载运行时候,母线正常的电压大约是1.35倍,380*1.35=513伏,这个电压当然会实时波动的,但是最低不能低于480伏,否则会欠压报警保护。母线电容一般是两组450V电解电容串联而成,理论耐压是900V,如果母线电压超过这个值,电容会直接爆掉了,所以母线电压是无论如何都不能达到900伏这么高压的。

实际上,三相380伏输入的IGBT的耐压值是1200伏,往往要求工作在800伏以内,考虑到电压如果升高,都会有个惯性问题,也就是你马上让制动电阻工作了,母线电压也不会很快降低下来,所以很多变频器,都是设计在700伏左右就通过制动单元让制动电阻开始工作,让母线电压降低下来,避免往上继续冲。

所以制动电阻设计,核心就是考虑到电容和IGBT模块的耐压问题,避免这两大重要的器件被母线的高电压冲坏掉了,这两类元件如果坏掉了,变频器也就无法正常工作了。

快速停车要制动电阻,瞬间加速也需要

变频器母线电压之所以会变高,很多时候是变频器让电机工作在电子制动状态,让IGBT通过一定的导通顺序,利用电机是大电感电流不能突变,瞬间产生高压来往母线电容充电,这时候让电机快点降低速度下来。如果这时候没有制动电阻及时消耗掉母线的能量,母线电压将会持续变高而威胁变频器的安全了。

如果负载不是很重,也没有什么快速停车要求,这种场合是不需要使用制动电阻的,即使你装了制动电阻,制动单元的工作阀值电压没有被触发,制动电阻也不会投入工作。

除了大负荷减速场合需要增加制动电阻和制动单元来快速刹车外,实际上如果符合比较重,启动时间时间要求非常快那种,也需要制动单元和制动电阻来配合启动的,以往我试过用变频器带动一种特殊的冲床,要求把变频器的加速时间设计成0.1秒,这时候满负荷启动,虽然负荷并不是非常重,但是因为加速时间太短了,这时候母线电压波动非常厉害,也会出现过压或者过流的情况,后来增加了外置的制动单元和制动电阻,变频器就能正常工作了。分析起来,是因为启动时间太短,母线电容的电压瞬间被掏空了,而整流器瞬间有大的电流充进来,引起母线电压突然变高,这样母线的电压波动太厉害,瞬间可能会超过了700伏,加上了制动电阻,就可以及时消除这个波动的高压,让变频器工作在正常状态。

还有一种特殊的情况,是矢量控制场合,电机的扭矩和速度方向相反,或者工作在零转速百分百扭矩输出的场合,比如吊机掉了重物停在半空中,收放卷场合需要力矩控制,都需要让电机工作在发电机状态,源源不断的电流会反充到母线电容中,通过制动电阻,就可以及时消耗掉这些能量,保持母线电压平衡稳定了。

很多小变频器,比如3.7KW的,往往都内置了制动单元和制动电阻,应该是考虑到母线电容调小的缘由吧,而小功率的电阻和制动单元并没有那么贵。

制动电阻的选择

制动电阻的选择除受到变频器专用型能耗制动单元最大允许电流的限制外,与制动单元也并无明确的对应关系,其阻值主要根据所需制动转矩的大小选择。

功率根据电阻的阻值和使用率确定。制动电阻阻值的选定有一个不可违背的原则:应保证流过制动电阻的电流IC小于制动单元的允许最大电流输出能力,即:R > 800/Ic

其中:800 —— 变频器直流侧所可能出现的最大直流电压。

Ic —— 制动单元的最大允许电流。

为充分利用所选用的变频器专用型制动单元的容量,通常制动电阻阻值的选取以接近上式计算的最小值为最经济、同时还可获得最大的制动转矩,然而这需要较大的制动电阻功率。在某些情况下,并不需要很大的制动转矩,此时比较经济的办法是选择较大的制动电阻阻值、也因此可以减小制动电阻的功率,从而减少购买制动电阻所需的费用,这样的代价是制动单元的容量没有得到充分利用。

制动电阻的计算

在选定了制动电阻的阻值以后,应该确定制动电阻的功率值,制动电阻功率的选取相对比较繁琐,它与很多因素有关。

制动电阻消耗的瞬时功率按下式计算:P 瞬= 7002 /R

按上式计算得到的制动电阻功率值是制动电阻可以长期不间断的工作可以耗散的功率数值,然而制动电阻并非是不间断的工作,这种选取存在很大的浪费,在本产品中,可以选择制动电阻的使用率,它规定了制动电阻的短时工作比率。制动电阻实际消耗的功率按下式计算:

P 额=7002 /R×rB%

rB%:制动电阻使用率。

实际使用中,可以按照上式选择制动电阻功率,也可以根据所选取的制动电阻阻值和功率,反过来计算制动电阻所能够承受的使用率,从而正确设置,避免制动电阻过热而损坏。

制动电阻使用功率的计算

制动电阻使用率规定了制动电阻的使用效率,以避免制动电阻过热而损坏,它会影响制动单元的制动效果。制动电阻的使用率设置越低,电阻的发热程度越小,电阻上消耗的能量越少,制动效果越差。同时,制动单元的容量也没有得到充分利用。

理论上讲,制动电阻使用率为100%时,对制动单元容量的利用最充分,制动效果也最明显,然而这需要较大的制动电阻功率的代价,使用者应综合考虑。在制动电阻阻值和功率都已经确定的前提下,对于减速较慢的大惯性负载,选取较低的电阻使用率会取得较好的效果。对于需要快速停机的负载,宜选取较大制动电阻使用率。


1分不嫌少!


楼主最近还看过


热门招聘
相关主题

官方公众号

智造工程师