无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶,世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的;它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶安全是拉动无人驾驶车需求增长的主要因素。
回顾以前分别发生在美国和中国的两起特斯拉自动驾驶状态下的车祸致死事件,本质上就是因为视觉识别技术的缺陷导致。
上述两起事故,虽然只是所有有关特斯拉自动驾驶车祸中最典型的两起,但却足以说明在视觉识别技术尚未完善的情况下,使用自动驾驶模式是非常危险的。同样,视觉识别技术对于自动驾驶、无人驾驶技术的重要性也不言而喻。
传统的视觉识别常见的应用场景有文字转录、人脸识别、指纹识别等等,不过这些视觉识别技术都有一个共同的特点,都是静止状态下的识别。而在汽车领域,视觉识别在识别内容和要求两个方面就与传统视觉识别有所不同。
识别内容方面,汽车领域的视觉识别最大难点在于,摄像头和识别目标两者都是相对运动的。比方说需要识别的机动车、非机动车、人,这些物体是参与交通的一部分且是处于主动运动状态。而障碍物,以及交通牌、红绿灯等交通标识则是相对运动状态。
而识别要求方面,则是追求低成本的同时还强调性能。一个足够强大的视觉识别系统,其实是可以替代激光雷达的作用,从而降低自动驾驶成本。但是由于技术特性的不同,也会带来一定的可靠性问题。对于汽车而言,即使出现短暂性的问题都可能会严重威胁人身财产安全,比方说特斯拉的那两起事故。
正是由于汽车领域的视觉识别既要求成本又要求性能,而识别内容又更加繁复,因此视觉识别在汽车领域的应用难点尤其突出。
深度学习可以算是近些年来人工智能领域的最大突破之一,如果在算法和样本量足够的情况下,其准确率可以达到99.9%以上,而传统的视觉算法检测精度的极限在93%左右。这样一来,将深度学习融入视觉识别系统,可以使得无人驾驶技术更加完善。
无人驾驶的环境感知部分包括车道线、车辆、行人、交通标志等目标的自动检测,这就要用机器学习的方法去完成自动识别工作,而深度学习是目前为止最好的机器学习方法。深度学习利用其深层的神经网络,通过一定的算法能训练出一个识别率非常高的分类器,从而能够使环境感知部分高精度的完成,为驾驶决策模块提供正确的环境信息,保证无人驾驶正常的完成。
所以说,相比于传统模式识别算法,深度学习算法所具备的精确度更高、环境适应性更强等特点,让无人驾驶技术中的视觉识别更上一层楼,也让整个无人驾驶技术更完善。
目前,机器视觉技术在无人驾驶汽车中并没有进行大规模的应用,其实这这并非是硬件的问题,事实上摄像头技术在汽车中的应用已经十分成熟,如善领科技的行车记录仪,广角视野、倒车影像等功能都完全具备,而芯片技术也已能够高效完成图像的压缩处理,最终难点在于模拟神经网络的视觉算法。