学会自动还要自发人工智能将成工业4.0发展关键 点击:354 | 回复:0



智控淘

    
  • 精华:0帖
  • 求助:0帖
  • 帖子:4帖 | 17回
  • 年度积分:0
  • 历史总积分:8
  • 注册:2017年2月09日
发表于:2017-08-24 15:44:08
楼主

        工业3.0虽然因为大量导入ICT科技,发展出非常高度的自动化应用,但元智大学工业工程学系副教授钟云恭指出,自动化程度提高,不代表就是已经智能化,但如果生产线有问题,机器却不能自我改善,就需要有人来处理,真正要达到减少人力的目标,其实并不容易。

所幸,随着人工智能所须具备的机器学习理论(Machine Learning Theory)的基础,目前因已发展成熟,机器自我学习的能力得以提升,德国提出的工业4.0展望于焉成形。



元智大学工业工程学系副教授钟云恭

 

钟云恭指出,机器人或视讯监控,都是人工智能应用的具体呈现,以机器人为例,可以将视觉、听觉及动作成为一体,如装配需要看到位置及瑕疵,安装时要注意力道,或是对机台是否造成损坏等,但机台运作久了,难免会有故障,但到底是要停机? 还是要自我改善? 能不能让机器自适应,即使碰到困难,顶多只会发生一次,而且不需要人力维护,就能避免犯下同样的错误,唯有机器能够自动改善,才能做到无人工厂。

 

钟云恭强调,人工智能跟自动化的差别,就在于有没有“学习”或“自我改善”。 机器不只要“自动”,还要“自发”。 自动化(automatic)设备与具自发性(autonomous)的设备,驱动的数学模式是不一样的,前者是模式驱动(Model-Driven),用的是演绎法(deduction),后者是数据驱动(Data-Driven),用的是归纳法(induction或generalization),这也是为何大家得改用人工智能中的“机器学习理论”来处理大数据的原因。

 

但实验室中的理论或实验结果所得到的数据特性,钟云恭认为,仍然不比实际上在物联网(IoT)或工业物联网(IIoT)中,具6V特性的大数据(Big Data)还要复杂,许多错综复杂且真假难辨,堆积如山又深如大海的网络数据,目前仍无法用实验室中的人工智能,有效率地分析与处理。

 

因此,在“机器学习”之前与之后,都需要数据统计分析技术。 但钟云恭指出,一般懂机器学习模式的人,却未必通晓数据的统计分析,就像医生没有幕后发明药的生化专家一样,病不好治。 要成功的发展工业4.0,就必须具备“机器学习理论”,以建立可以处理6V大数据学习算法模式的专家,与懂得如何分析(analyze)与合判(Synthesize)各类不同特性数据的”统计技术”人才。

 

此外,信息系统开发的”计算器科学”人才,也不可少,专攻通讯网络与硬件建设的工程专家,也有一定的地位。 因此要发展工业4.0,需要有功夫扎实的跨领域合作团队,才能在工业4.0崎岖不平的道路上,披荆斩棘地前进。

 

从自动化经验发展人工智能

 

钟云恭指出,台湾制造业的确进步很快,自政府提倡”生产力4.0”的目标后,业界都向”无人工厂”的迈进,但取代人力的设备与机器的自动化,究竟是仍属传统的弹性制造系统(Flexible Manufacturing System;FMS)? 或是等级更高的计算机化整合制造系统(Computerized Integrated Manufacturing System;CIM)? 还是已经有学习功能,会自发性生产的制造系统?

 

 

如制程或规格监控,自动化只能做到区隔是及不是,只要监控结果不在不正常的范围,系统就会以为还是正常的。 但人工智能可以透过学习结果,从”不一定”的答案中找到答案,就会有能力自己调整监控范围。

 

钟云恭认为,人工智能要像机器老鼠走迷宫,当第一个错误发生时,要有能力学习,甚至要有能力预测可能出现的错误。 但传统的控制模式,都会有假设模式,只要超出假设模式,就很难避免错误发生。 以影像辨识为例,在撷取讯号或影像,虽然都已经没问题,但如果是从来没有看过的数据,就可能会无法辨识,自然就无法避免可能发生的错误。

 

因此,只要问:”这套设备有学习的功能吗? 就可以知道该设备是否达到工业4.0的级数,但欧美等国开始倡导工业4.0,也才不过5年的时间,台湾现在还很难有真正的学习型智能机器或生产线,能以精实管理的判断过程如6个标准偏差(Six Sigma)为基础,透过机器学习来完成。

 

钟云恭指出,现今的自动化制造知识,是工业4.0的学习对象之一,机器若没有”自动”动作,尔后也不会学到”自发”行为。 能做到高度自动化,就有机会做到人工智能化,因为数学模型已经高度完整,网络环境、中央控管系统、大数据分析相对成熟,现在的关键是机器本身有无学习能力,更重要的是要学习,为什么会有问题。

 

导入人工智能的目的,在于要做到精准预测,如误差往往是渐进发生的,但现在的产品制造速度愈来愈快,可能等到察觉问题时,就已经制造出很多不良品,人工智能因为要走一步学一步,算法学习速度也许不够快,但是只要学习完成了,不但不会再犯错,而且会愈走愈快。

 

尽快建立成功案例

 

制造业若希望能在智能工厂与工业4.0相关领域有所表现,钟云恭认为,可能会遭遇的主要挑战,就是人才不足的问题。 如在人工智能领域,台湾并没有投入足够的资源,如数学教育的氛围需要更加强化,才能培养能够用机器学习算法来设计计算机的人才。

 

反观大陆,不仅已经拥有自己的超级计算机,也已开始进行人工智能方面的实验,如Travel Salesman Problem(TSP),可深入了解逻辑运算的正确性,大陆的”知识大跃进”,将会是台湾需要面临的挑战。

 

但最主要的挑战,钟云恭认为还是来自企业主本身,是否真的愿意投入足够的研发经费。 怕失败,怕投资无法回收”是每个企业主一定会有的风险考虑,但要搞工业革命,没有经费,那革命恐怕也会待在”尚未成功”的阶段。

 

政府除要持续高度对制造业施行各项辅导与补助外,也要体认工业4.0是要着重在研发与教育。 政府政策必须多管齐下,除加强提升业界现有之多功能自动化的FMS或CIM系统,使之提升至再具有自发性功能外,还要建立教育机器学习理论与算法设计的环境,如研发可以学习用数据方式来呈现过去制造经验的智能机器与设备,尽快建立成功案例,才能够有效推动人工智能于工业4.0的应用推广。

申明:本文转自智控淘商城,如有转载请申明来源。


 



热门招聘
相关主题

官方公众号

智造工程师