近年来,电容器的性能得到了极大程度的开发。人们通过新材料开发继续提高超级电容器的性能,并赋予其新的特色和功能(如轻质、柔性、可编织等),以使其更好地应用到实际生活和生产中。
最近,中国科学院苏州纳米技术与纳米仿生研究所赵志刚课题组开发出一种智能超级电容器电极有助于这一问题的解决。这种智能超级电容器电极以氧化钨(W18O49)纳米线和聚苯胺(PANI)为电极活性材料,通过图案化制备加工而成,氧化钨(W18O49)组成图案“SINANO”,聚苯胺(PANI)组成背景。该电极具有丰富的颜色变化,且电容性能优异,可以通过其图案和背景颜色的交互变化来展示其能量存储状态(如图)。当一种组分着色时,另一种组分即为透明色。随着能量储存和释放过程进行,图案(W18O49)和背景(PANI)颜色发生相应的交互变化。该研究结合了普通超级电容器能量储存的功能和电致变色的可视变化,赋予了超级电容器“智能化”新特性,为超级电容器的未来发展开辟了一条新的道路。
目前,该研究成果已发表于国际期刊《纳米快报》上。上述科研工作得到了国家自然科学基金、教育部留学回国人员科研基金的大力支持。
一个大胆而令人振奋的设想是能否开发出一种创新性的超级电容器,并赋予其智能化新特性。“智能化”意味着超级电容器本来只能执行单纯能量存储的功能,智能化后不需要复杂的电路设计,即可获得与人互动的能力,例如将自身性能数据转换成图形或图像在屏幕上显示出来并进行交互处理。
多方位发展的<此处内容被屏蔽>无感电容<此处内容被屏蔽>
单相电机流过的单相电流不能产生旋转磁场,需要采取无感电容用来分相,目的是使两个绕组中的电流产生近于90゜的相位差,以产生旋转磁场。无感电容感应式电机有两个绕组,即启动绕组和运行绕组。两个绕组在空间上相差90度。在启动绕组上串连了一个容量较大的电容器,当运行绕组和启动绕组通过单相交流电时,由于电容器作用使启动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。在时间和空间上形成两个相同的脉冲磁场,使定子与转子之 间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场相互作用产生电磁场转矩,使电机旋转起来。要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。