1 引言
随着中央提出大力发展清洁能源的建设并为激励农村和边远山区的进一步发展,国家对小水电事业给予越来越多的关注。我国的小型水电站在近20年得到了极为迅速的发展,其中以万千瓦以下的小型水电站居多。对这些小型水电站的监控保护和自动控制也显得尤为重要。本文主要讲述了三菱FX2N系列PLC在水电站有功调节中的应用。
水电站的有功调节通常是通过调速器实现的,但当水轮机组并入电网运行时,对于单台发电机来说转速反馈几乎不起作用。近年来,随着自动发电控制(AGC)的需要,有功功率在控制系统中的调节品质已成为当前电力系统自动化领域的突出问题。
2 系统组成
本系统中控制的两台水轮发电机型号为SFW2500-10/1730、6.3kV/286A。本系统采用分层分布式布局,配置如图1所示。主要由2个机组监控屏、发电机保护屏、公用监控屏、主编线路保护屏和电量屏构成。通讯采用高速以太网与上级调度、操作员工作站进行通讯。其中公用监控屏由可编程控制器(由三菱FX2N-80MR和2个FX0N-16EX扩展模块组成)、自动准同期装置、触摸屏、电力测控仪和逆变电源组成,在公用监控屏中实现对发电机的有功调节。
图1 系统配置图
3 控制要求
在电力系统中,频率与电压是电能的2个主要质量指标,电力系统中的频率变化的主要原因是由于有功功率不平衡引起的。系统的负荷经常发生变化,要保持系统的频率为额定值,就必须使发送的功率不断跟随着负荷的变动,时刻保持整个系统有功功率的平衡。否则,系统的频率就会大起大落,保证不了电能的质量,甚至会造成事故与损失。
当负荷吸取的有功功率下降时,频率增高;当负荷吸取的有功功率增高时,频率降低,即负荷调节效应。由于负荷调节效应的存在,当电力系统中因功率平衡破坏而引起频率变化时,负荷功率随之的变化引起补偿作用。如系统中因有功功率缺额而引起频率下降时,相应的负荷功率也随之减小,能补偿一些有功功率缺额,有可能使系统稳定在一个较低的频率上运行。如果没有负荷调节效应,当出现有功功率缺额系统频率下降时,功率缺额无法得到补偿,就不会达到新的有功功率平衡,频率会一直下降,直到系统瓦解为止。
频率和有功功率自动调节的方法主要有:
(1) 利用机组调速器的调节特性进行调频;
(2) 根据频率瞬时偏差,按比例分配负荷,构成虚有差调节频率和负荷的方法;
(3) 按频率积分偏差调节频率,满足“等微增率”原则分配负荷;
(4) 按给定负荷曲线调节有功功率(本文所介绍的是按给定负荷曲线调节有功功率)。
电站的调节系统应该使总功率等于负荷曲线给定的功率。而机组之间则按“等微增率”原则经济分配负荷。如果系统频率偏差不超过调频电站所能补偿的范围,则调功电站的调节系统对频率偏差不应作出任何响应。如果系统运行工况发生了变化,出现了较大的频率偏差则调频电站无力完全补偿偏差值,那么调功电站的自动调节装置应该作用于各台机组的调速器,使之改变各台机组的有功出力来帮助恢复系统频率。
图2 功率与频率关系曲线
图2示出功率与频率的关系曲线。在死区±Δfmax范围内,频率偏差信号Δf不起作用,此时电站的实际功率 与给定的总功率PG之间的偏差ΔP产生调节作用。
PG为电站负荷曲线给定装置取得的,使由各台机组有功功率测量元件测到的有功信号相加后得到的。当时,两台机组的调节作用只受有功偏差ΔP的影响,而与频率偏差Δf无关,此时调节特性方程为:
4 系统的硬件设计
图3示出系统硬件框图。根据系统的控制要求配置硬件如下:
图3 系统硬件简图
·控制器:三菱FX2N-80MR和两个FX0N-16EX扩展模块组成;
·人机界面:触摸屏;
·其它设备:2个DC24V继电器、功率表以及其它的辅助器件。
5 系统软件设计
本系统确保整个系统频率的稳定和电网的稳定供电。控制流程图如图4所示。
图4 系统流程图
部分梯形图如图5所示:当系统需要进行有功调节时,系统的软件或是手动发出信号开始调节,此时采集1个实时有功数据此数据与设定值(即目标功率值)进行比较并进行数据处理算出需要调节的时间,然后发出信号使调节继电器动所开始调节。如未达到则有可能是系统内部有故障。为了避免使程序进入死循环,则调节四次仍未能达到要求就自动中止程序)。如图4所示,当M10接到触发信号后瞬时接通使D300采到的瞬时有功功率数据与D301(设定值)进行比较。当D300 >D301时输出信号M300使PLC的Y001输出并使调节继电器动作进行调节。
图5 部分程序梯形图
6 结束语
本文所设计的系统操作简单、自动化程度高、应用广泛。减小了小型水电站工人的劳动强度,增加了整个系统的稳定性。经过一段时间的认真测试证明该系统已经完全符合小型水电厂的有功调节的要求。