近年来大规模风力发电场的数量大幅度增加。由于风场大都位于海面上,或遥远的乡村、山区,如何将风场连接至电网是投资风力发电时一个重要的考虑因素。如果是海上风场,这个因素更为重要。除了建设需要考虑的问题外,对电力系统稳定的影响也是需要考虑的重要因素。随着风电场的容量越来越大,对电力系统的影响也越来越明显,研究风电并网后对系统的影响己成为重要课题。
风电的随机性使风电厂输入系统的有功功率处于不易控制的变化之中,相应地风电场吸收的无功功率也处于变化之中。在系统重负荷或者临近功率极限运行时,风速的突然变化将成为系统电压失稳的扰动。
风电场所在地区往往远离负荷中心,处于供电网络的末端,而且需要消耗感性无功,系统的电压稳定问题更加突出。
在风电场规划设计时,通常根据电力系统确定一个风电场的最大容量,但是不同厂家、型号的风力发电机组的功率曲线不同,无功电压特性也不同。目前国内采用的双馈机组可以根据需要调节无功,对系统来说起到了一定的稳压作用。
风电也给发电和运行计划的制定带来很多困难,需要重新评估系统的发电可靠性,分析风电的容量可信度,研究新的无功调度及电压控制策略以保证风电场和整个系统的电压水平及无功平衡,以及对孤立系统的稳定性影响等。
风力发电机的并网
风力发电领域要解决的一个很重要的问题是风力发电机组的并网问题。目前在国内和国外大量采用的是交流异步发电机,其并网方法也根据电机的容量不同和控制方式不同而变化。异步发电机并入网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格和精确,只要检测到转速接近同步转速时就可并网,但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使电压保护回路动作,从而导致异步发电机根本不能并网。当前在风力发电系统中采用的异步发电机并网方法有以下几种。