发表于:2005-05-24 17:40:00
楼主
1. 前言
在电厂信息化的建设过程中,越来越多的专家、学者和电力工程设计人员意识到推动现场总线技术在电厂应用的重要性和迫切性,已有许多论文提出了基于现场总线技术的控制系统在电厂的应用设想和建议。但到目前为止,在国内已建和在建电厂中,真正意义上的全面和系统地应用现场总线控制系统的实例还未见报道,见诸于文献的还只是局部的试点应用。大家对现场总线技术代表了未来电厂自动化的发展方向均持肯定和积极的态度,但为什么在工程设计中却又难以进入实质性的应用呢?
为了便于下面对这个问题的讨论,尽管关于现场总线和现场总线控制系统的涵义已反复在相关文献中进行了阐述,笔者依然觉得还是有必要先引用国际电工委员会IEC及专家对什么是现场总线及现场总线控制系统作出的定义。
根据国际电工委员会IEC61158标准的定义:安装在制造或生产过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、双向、多点通信的数据总线称为现场总线。由现场总线与现场智能设备组成的控制系统称为现场总线控制系统FCS(Fieldbus Control System)。而衡量一个控制系统是否为真正的现场总线控制系统FCS有三个关键要点,即:核心、基础和本质。FCS的核心是总线协议,只有遵循现场总线协议的控制系统,才能称为现场总线控制系统;FCS的基础是数字智能现场仪表,它是FCS的硬件支撑;FCS的本质是信息处理现场化,这是FCS的系统效能体现。
从上述定义可以看出,现场总线控制系统是一种全计算机、全数字、双向通信的新型控制系统。它与DCS的本质差异在于现场级设备的数字化、网络化,实现了控制装置与现场装置的双向通信,消除了生产过程监控的信息“盲点”。可以说,现场设备级的数字化、网络化是电厂信息化管理的基础。
2. 现场总线技术的特点及现状
CPU技术的发展导致了现场仪表和装置的数字化革命,也使得现场仪表和装置之间的数字通讯成为可能。数字化、智能化的现场仪表和装置(如传感器、执行器等)不仅仅是替代了4~20 mA模拟系统,更主要的是可以在现场设备中实现控制功能和设备管理功能,而且有了数字通讯,在控制室可以获得现场设备的诸多信息,如诊断、量程、组态和标识等。现场总线技术的出现,使得原来需要大量电缆进行点到点连接的众多现场设备信号可通过一根网络电缆来传输,可以显著减少电缆的使用量及降低相关的材料和安装费用。
现场总线技术开发的出发点就是要为用户提供开放的、具有可互操作性、可互换性和统一标准的测量和控制产品,克服传统DCS和PLC等含有专利性技术的控制系统所带来的封闭性问题,择优选择不同公司的产品,集成最佳的生产过程控制系统,降低工程项目的建造和运营成本,提高企业的竞争力。
综合有关资料的论述,同传统DCS和PLC控制系统相比,以现场总线技术为基础的控制系统FCS的优越性概括起来有以下几方面:
(1) 互操作性
(2) 分散性
(3) 可靠性
(4) 精确性
(5) 开放性
(6) 经济性
(7) 可维护性。
这些特点和优越性在相关的文献中有详细的阐述,在此不再赘述。既然有这么多的好处,我们为什么不积极使用呢?这就又引出了现场总线的标准之争以及现场总线自身的局限性问题。
首先,现场总线标准之争的结果就是1999年底IEC TC65(负责工业测量和控制的第65标准化委员会)通过了 8种类型的现场总线作为IEC61158国际标准。2001年8月经过修订制定出10种类型的现场总线标准(第三版),分别为:
Type 1 TS61158现场总线
Type 2 Control Net 和Ethernet/IP现场总线
Type 3 Profibus现场总线
Type 4 P-Net现场总线
Type 5 FF HSE现场总线
Type 6 Swift Net现场总线
Type 7 WorldFIP现场总线
Type 8 Interbus现场总线
Type 9 FF H1 现场总线
Type 10 PROFInet现场总线(2003年4月成为正式国际标准)
除了上述10种标准之外,还有IEC TC17B通过的现场总线标准SDS(Smart Distributed System)、ASI(Actuator Sensor Interface)和DeviceNet,以及ISO11898的CAN协议,还有一些欧洲标准。这么多的标准给用户应用带来了很大的困惑,也就导致了没有事实上的统一标准,因为不同的现场总线标准协议之间是不能够直接进行互连和通讯的。
其次,上述各种现场总线是针对不同的应用领域开发的,现场总线自身存在着应用领域的局限性。
在工厂自动化领域,离散逻辑控制处于主导地位,因为工厂自动化含有快速移动的机械,同较慢的过程自动化相比,要有更快的响应。适用于这类场合的现场总线类型有DeviceNet、 ControlNet、Profibus(DP及FMS应用行规)、以及Interbus、ASI(AS-Interface)。
在过程自动化领域,连续的调节性控制占支配地位,但也包含离散或开关量控制。适用于这类场合的现场总线类型有Foundation Fieldbus, Profibus-PA、WorldFIP等。
3. 电厂生产过程的控制特点
电厂的生产包含了以下几个主要工艺过程:燃料系统(煤炭和燃油/气的运输及贮存)、热力系统及锅炉和汽轮机发电机组(将燃料的化学能转变成热能、热能将水变成蒸汽、蒸汽热能在汽轮机中转变成机械能、再转变为电能)、除渣出灰系统(燃烧物的固体废弃物处理)、脱硫系统(大气排放物的处理)、水处理系统(含净水、锅炉补给水、废水、凝结水精处理、化学取样和加药等)、发配电系统(含厂用电系统、升压站等)。由此可以看出,电力生产是一个极其复杂的工业过程,它涵盖了工厂自动化和过程自动化的内容。在传统的电厂控制系统模式中,主厂房区域热力生产过程通常采用DCS作为主要的控制系统,其他辅助系统则采用以PLC为核心控制系统。由于现场级设备主要采用传统的模拟量和开关量信号,生产过程的监控只能到达I/O子系统。
在近几年的电力建设过程中,电力生产企业的信息化管理引起了广泛的重视,投入了大量的资金构建辅助控制系统网络、电厂实时监控系统(SIS)和电厂信息管理系统(MIS),而对于现场级的设备依然采用传统的装置和方式接入控制系统I/O子系统。这对于以预测性设备维护和设备管理为预期目标的信息化建设,无疑是“无源之水”。因此解决电厂“信息盲区”的根本出路是应用支持现场总线的智能现场设备。
4. 应用现场总线技术存在的问题
尽管现场总线技术具有一系列的特点和诱人的优越性,尽管建设数字化和信息化电厂的呼声越来越高,但在电力设计院和建设单位尝试使用现场总线技术的工程屈指可数。主要的应用障碍在一些文献中已有分析,如:
(1) 现场总线标准多,用户选择无所适从。
(2) 支持现场总线标准的智能现场设备的规格和品种较少,支持总线标准的国产设备更少,尤其是针对电厂开发的智能设备,不能满足电厂各专业的需要。
(3) 支持现场总线标准的智能现场设备价格较高。尽管基于现场总线技术的控制系统软硬件费用与DCS相比持平或略高,但FCS对于控制系统的设计、建造、调试直至运行、维护的整个项目生命周期成本同DCS相比确实要低得多。而这种效益往往是投资方和建设单位在项目规划阶段可能不会引起足够重视的问题。
(4) 连接现场总线设备底层的网络不支持冗余结构。
除了上述这些应用障碍之外,笔者以为还有以下一些制约因素限制了现场总线技术在电厂的应用。
(1) 现有电厂的基建模式。现在电厂控制设备的采购大多是由设计院编制设备规范书,由建设单位组织采购,也有一些设备由施工单位采购,还有的控制装置由主机厂配套或分包。这种设备的采购方式难以保证按照统一的总线标准供货。根据现在的实际情况,即使规范书中的技术条件十分明确,往往现场到货却是另一回事。不同的现场总线标准是不兼容的,结果化了钱却起不到效果。
(2) 在设计院内部,自动控制涉及电气专业、热控专业甚至系统专业。这些专业分管的系统和现场设备各不相同。如在主厂房内,泵与风机的开关站(SWITCHGEAR)和PC、MCC设备归电气管,电动门MCC归热控管。成百个设备在设计和订货时要求电气和热控采用统一的现场总线标准,难度可想而知。
(3) 投资方、建设单位、施工单位甚至设计院的技术人员对现场总线技术缺乏深入的了解。现场总线是一个新型控制系统,作为现场总线应用的技术人员,尤其是设计院的热控设计人员如果还停留在对DCS的认识水平上是无法设计合理的现场总线控制系统,也不可能发挥现场总线的优势,甚至不能保证现场总线控制系统的正常工作。比如,现场总线FF和Profibus-PA支持总线供电,但对于挂接的现场设备数量和总线的通信距离均有限制,还要设置合适的终端装置,因此必须熟悉掌握现场总线及智能设备的特性,才能保证总线设计的正确性。再如,只有FF总线协议支持建立控制策略的编程语言,也就是说,只有支持FF总线协议的智能设备如阀门定位器可以当作调节器使用,在自身回路执行PID功能,控制功能分散到现场设备,系统功能和故障更加分散,也进一步降低了中央控制器的负载,改善了系统的性能,中央控制器的数量也相应减少了。但Profibus技术没有控制策略的编程语言,也即支持Profibus-PA的现场设备不能实现控制策略,控制必须由中央控制器完成。然而,支持Profibus的产品系列比FF要齐全、广泛。
这些特性都必须是在选择现场总线标准时设计人员所必须要考虑的。
(4)