EtherNet/IP工业以太网白皮书
© IEEE电气和电子工程师协会, EFTA 2001
Paul Brooks 罗克韦尔自动化
摘要:DeviceNet™设备网和ControlNet™控制网已经是广为人知的工业网络,它们都在应用层采用了CIP(通用工业协议)。这两种网络最初都是由罗克韦尔自动化开发的。而今,它们分别归ODVA(开放DeviceNet供应商协会)和ControlNet International两家国际性制造商组织所拥有。最近,ODVA和ControlNet International共同推出了EtherNet/IP协议(其中,IP是工业协议的英文缩写)。本文将介绍它的技术原理和传输机制,以及如何在基于TCP/UDP/IP协议的以太网®上实现网络服务和数据对象的一致性。
I. 简介
工业自动化系统的网络必须为用户提供三种主要的服务。首先是控制,这也是最为重要的功能。控制服务主要用于完成控制设备(例如PLC)与I/O设备(例如变频器、传感器以及其它执行机构)之间的数据交换,并且有苛刻的实时性要求。因此,相应的传输网络必须为这类数据的传输设定较高的优先权或者中断等级。其次,还要提供配置服务,方便用户对自动化设备进行设置和维护。通常,用户需要使用个人计算机(PC)或者类似设备对系统中不同的设备进行编程和配置。这项任务不仅需要单独执行,而且还要在控制系统运行的情况下,支持配置服务。比如,批量处理过程中的配方管理就需要这样功能。最后,用户需要采集自动化系统运行过程中的各种数据,用于人机界面显示、数据分析、趋势图绘制、故障处理和维护。可见,工业自动化系统的网络必须提供:控制、配置和数据采集三种服务,这样才能让网络更加高效、灵活,从而提高自动化系统的整体性能。
在网络中,生产者/消费者通讯模式比源/目标通讯模式更容易支持控制、配置和数据采集服务。在网络应用层协议中,利用分布式对象和生产者/消费者通讯模式,将会更好地满足自动化系统的应用要求。
如图1所示,一个典型的工业自动化系统网络结构。由于每种网络都有不同的物理层和数据链路层,其属性和特点也各不相同。因此,在这样的系统中,不要指望某种单一的网络能够满足所有的应用要求,而是需要采用多层网络架构,并且要求不同网络之间的数据具有一致性,从而方便网络间的数据交换与共享。
图1 典型自动化系统网络结构
如果在以太网上实现控制、配置和数据采集服务,同样不可避免其它网络服务也要在网络上运行。因此,生产者/消费者通讯模式必须做到在同一网段上完全能够与其它服务共存(比如用于网页浏览的HTTP服务)。
在图1中可以看到,一个典型的工业自动化系统网络包括:1、信息层网络,通过以太网来实现。许多控制器厂商早就提供对以太网的支持;2、控制层网络,通常利用网络的确定性和介质是否冗余等传统标准来衡量某一网络能否作为控制层网络,ControlNet属于这类网络;3、设备层网络,要求传输数据较少,能够通过一根结实、耐用的电缆来完成数据传输和设备供电,DeviceNet属于这类网络。
ODVA(开放DeviceNet供应商协会)和ControlNet International两家组织推出了新的CIP协议成员——EtherNet/IP(其中,IP是工业协议的英文缩写),从而实现了通过以太网提供控制、配置和数据采集服务。因此,它能够作为图1中的信息层网络和控制层网络来使用。
II. CIP协议在以太网上的实现
除了可以从EtherNet/IP专题网站免费下载《EtherNet/IP协议规范》以外,ODVA和ControlNet International的网站也提供免费下载。EtherNet/IP协议规范被细分为多个章节和附录,主要内容如图2所示。
从图2可以看出,EtherNet/IP、DeviceNet和ControlNet三种网络具有统一的应用层、应用对象库和设备描述。也就是说,在七层OSI网络参考模型中,这三种网络只有最低的四层不同,如图2所示。
图2描述了EtherNet/IP的协议结构,通过使用这些不同层面的协议,实现了对控制、配置、数据采集服务的优化,使得EtherNet/IP在控制领域的应用更加切实可行、更加安全可靠。