首页 ARBOR 正文

回复

GPU原理与技术

ARBOR 浏览:2232 回复:1 收藏

sinap_zhj  2014-11-26 18:46

GPU,Graphic Processing Unit,图形处理器。GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。GPU是显卡的“心脏”,也就相当于CPU在电脑中的作用,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。图形处理芯片。GPU能够从硬件上支持T&L(TransformandLighting,多边形转换与光源处理)的显示芯片,因为T&L是3D渲染中的一个重要部分,其作用是计算多边形的3D位置和处理动态光线效果,也可以称为“几何处理”。一个好的T&L单元,可以提供细致的3D物体和高级的光线特效;只不过大多数PC中,T&L的大部分运算是交由CPU处理的(这就也就是所谓的软件T&L),由于CPU的任务繁多,除了T&L之外,还要做内存管理、输入响应等非3D图形处理工作,因此在实际运算的时候性能会大打折扣,常常出现显卡等待CPU数据的情况,其运算速度远跟不上今天复杂三维游戏的要求。即使CPU的工作频率超过3GHz或更高,对它的帮助也不大,由于这是PC本身设计造成的问题,与CPU的速度无太大关系。GPU是显示卡的“大脑”,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。显示芯片通常是显示卡上最大的芯片(也是引脚最多的)。今天,GPU已经不再局限于3D图形处理了,GPU通用计算技术发展已经引起业界不少的关注,事实也证明在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。GPU通用计算方面的标准目前有 OPEN CL、CUDA、ATI STREAM。其中,OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景。GPU在几个主要方面有别于DSP(Digital Signal Processing,简称DSP(数字信号处理)架构。其所有计算均使用浮点算法,而且还没有位或整数运算指令。此外,由于GPU专为图像处理设计,因此存储系统实际上是一个二维的分段存储空间,包括一个区段号(从中读取图像)和二维地址(图像中的X、Y坐标)。此外,没有任何间接写指令。输出写地址由光栅处理器确定,而且不能由程序改变。这对于自然分布在存储器之中的算法而言是极大的挑战。最后一点,不同碎片的处理过程间不允许通信。实际上,碎片处理器是一个SIMD数据并行执行单元,在所有碎片中独立执行代码 。尽管有上述约束,但是GPU还是可以有效地执行多种运算,从线性代数和信号处理到数值仿真。虽然概念简单,但新用户在使用GPU计算时还是会感到迷惑,因为GPU需要专有的图形知识。这种情况下,一些软件工具可以提供帮助。两种高级描影语言CG和HLSL能够让用户编写类似C的代码,随后编译成碎片程序汇编语言。Brook是专为GPU计算设计,且不需要图形知识的高级语言。因此对第一次使用GPU进行开发的工作人员而言,它可以算是一个很好的起点。Brook是C语言的延伸,整合了可以直接映射到GPU的简单数据并行编程构造。经 GPU存储和操作的数据被形象地比喻成“流”(stream),类似于标准C中的数组。核心(Kernel)是在流上操作的函数。在一系列输入流上调用一个核心函数意味着在流元素上实施了隐含的循环,即对每一个流元素调用核心体。Brook还提供了约简机制,例如对一个流中所有的元素进行和、最大值或乘积计算。Brook还完全隐藏了图形API的所有细节,并把GPU中类似二维存储器系统这样许多用户不熟悉的部分进行了虚拟化处理。用Brook编写的应用程序包括线性代数子程序、快速傅立叶转换、光线追踪和图像处理。利用ATI的X800XT和Nvidia的GeForce 6800 Ultra型GPU,在相同高速缓存、SSE汇编优化Pentium 4执行条件下,许多此类应用的速度提升高达7倍之多。对GPU计算感兴趣的用户努力将算法映射到图形基本元素。类似Brook这样的高级编程语言的问世使编程新手也能够很容易就掌握GPU的性能优势。访问GPU计算功能的便利性也使得GPU的演变将继续下去,不仅仅作为绘制引擎,而是会成为个人电脑的主要计算引擎。    

我知道了