FOD光纤位移传感器的原理解析 点击:1156 | 回复:0



御风天下

    
  • 精华:0帖
  • 求助:0帖
  • 帖子:94帖 | 0回
  • 年度积分:0
  • 历史总积分:180
  • 注册:2017年11月10日
发表于:2018-05-30 15:06:18
楼主

前言

加拿大FISO公司生产了一种商业用途的光纤位移传感器(Fiber-Optic Displacement Sensor, FOD),这种传感器使用了Fizeau干涉仪解调专利技术,具有结构简单、精度高和响应快的优点,目前已经在土木工程领域得到了成功的应用。本文将详细介绍该种传感器的原理和用途。
二、 组成结构和工作原理

1、传感器结构

传感器的简略结构如图所示,其连杆可以水平方向移动,在连杆上固定了薄膜Fizeau干涉仪(TFFI),它的详细构造如图所示。

1.jpg

2、工作原理

1)光信号调制

实际使用时将传感器与读数器(Demodulator)连接,读数器中白光二极管光源发出的光从连接读数器的光纤的一端入射,传输到连接Fabry- Perot传感器,再由多模光纤射出,照射在TFFI干涉仪(光楔)的表面。当TFFI水平移动时,照点的位置也会不同。光楔上下两个表面都镀有半反射 膜,因而构成了Fabry-Perot腔体。当读数器发射的白光的一部分被第一个半反射镜反射后,其余的白光穿过Fabry-Perot腔体,且再一次被 第二个半反射镜反射回来,两束反射光相互干涉,使得原来入射白光的光谱被调制。

假设光楔的材料是玻璃,取其折射率n=1.6,入射白光二极管波长范围根据文献[1]取为600nm1750nm。根据图2,光楔上下表面反射光的光程差为2nh,假设光源光谱所有频率光波的振幅皆为a,两束光在相遇点发生干涉时的相位差为d,光楔面的反射率为R,透射率为1-R,则合成振幅y为:y=a+aRe-iδ                                    1

据欧拉公式e-iδ=cosδ-isinδ,可得:y(t)=a(1+ Rcosδ-iRsinδ)                        2

光强与光波振幅的平方成正比,设光波相遇点的光强度为I,则:

Iy(t)×y(t)*a2(1+R2+2Rcosδ)                 3

对于TFFI的某个位置,光楔面的高度为h,不同波长l的光对应的干涉相位差δ为:

δ=(2nh/l)×2p4pnh/l                    4

光强I的极值为:

Ia21+R2+2R                              5

TFFI干涉仪中,为了形成光的反射面,需要在光楔的上下表面各镀上一层膜,而镀膜具有一定的厚度,所以镀膜上下表面的反射光将形成干涉,会影响测量结果。因此,镀膜的厚度应控制在光源中心波长的1/4,例如光源波长为600nm~1000nm,则镀膜厚度为800nm(假设镀膜材料的折射率为1),这 样镀膜上下表面大部分的反射光相位差为180°,强度被衰减。

在图2所示的坐标系中,设入射点距坐标原点的距离为x,光楔的倾斜角度为a,此时对应的光楔面高度为h

h7xtga mm                         6

tga18/250007.210-4

 
这里取x12.5mm=12500mm来计算传感器调制光的强度分布,将x的值代入(6)式可得h16mm,代入(4)式得到d,再把d代入(3)式即可得到光强I。取光源波长范围0.6mm1.75mm,光楔镀膜反射率R0.5,则可以得到如图所示的光强分布图。

2.jpg

可见,在光源光谱范围内部分波长处产生了有限个干涉极大值。显然,在传感器所在的不同位置,TFFI对光源的调制情况是不同的,即干涉极大值对应的波长值会发生变化。在波长l较小处,干涉极大值的波峰也较密。

2)光信号解调

读数器(信号调理器)的作用是对传感器送回的光信号进行解调,从中解算出位移信号,以上过程可以用图4表示。
读数器中附带了白光光源,从多模光纤返回的光经过柱状透镜变为平行光,会投射在TFFI干涉仪的倾斜面上,而TFFI的下表面紧贴了一个对光强敏感的 CCD传感器。如图5所示,假设单色光均匀照射在光楔的上表面,则在x方向的每一点,光楔上下表面的反射光会形成干涉,而下表面透射的光被CCD所检测。

3.jpg

这里假设解调用的TFFI干涉仪结构与传感器中的完全相同,即取自同一批次的产品,这样可以消除由于光楔形位公差对测量结果的影响。 
给解调干涉仪输入图3所示的调制光信号。为简单起见,这里只考虑其中光强极大值对应的波长。这些波长形成的干涉结果在CCD的长度方向上进行矢量叠加,由 于是白光干涉,所以叠加的次数越多,CCD上得到的干涉条纹越细锐。Matlab下的仿真结果如图所示。

4.jpg

根据仿真结果,CCD在长度为12.5mm的位置上的光强值恰好为最大,与传感器中光纤处于光楔的中心位置时(x=12.5mm)正好对应。

在传感器位移为S时,光干涉强度最大的光波在读数器的Fizeau干涉仪上也是干涉最大,所以分析CCD上光强最大点的所在坐标位置xSmax,就可以得到传感器的绝对位置SSmax

三、 性能特点

根据前面的分析和有关资料,白光位移传感器可以测量绝对位置,它具有如下特点:

1)使用白光二极管光源而不是激光光源,因此不需要激光二极管所必须的预热时间和恒温控制,降低了对光源稳定性的要求,而且白光LED的寿命也比激光二极管LD长得多;

2)传感器和读数器内部使用了结构相同的楔形薄膜干涉仪TFFI,这样可以补偿TFFI制造误差带来的测量误差,通常在不加任何补偿的情况下得到的最大线性误差为满量程的0.15%

3TFFI的制造工艺复杂,目前只能提供量程为20mm的位移传感器,更大尺寸的TFFI制造困难,限制了这种传感器量程的提高;

4)这种传感器本质上是利用光楔上下表面的光程差进行工作的,所以它对环境的震动和光纤的参数变化不敏感。光楔(TFFI)一般选用对温度不敏感的材料制造,传感器中无透镜,光纤的安装不需要严格对准,因此它可以在恶劣的环境下工作;

5)读数器内可以使用CCDPSD光探测器,CCD接收到的光强分布可以有多个极值点,但通过合理的结构设计可以保证只有一个最大点,信号处理使用求极大值的算法。



热门招聘
相关主题

官方公众号

智造工程师