发表于:2011-01-13 15:17:20
楼主
邵明双,孙军
(上海交通大学电子信息与电气工程学院,上海200030)
摘要 叙述了具有集成驱动、保护和系统控制功能的智能功率模块FSBB20CH60,对其实施了隔离式的外驱动设计,实现了一种高性能功率模块。将其应用于变频空调,降低了成本,提高了可靠性。目前已投入批量生产,取得了预期的效果。
关键字 智能功率模块;门极驱动;电平移位;自举;变频空调
A High Performance Power Module Based on FSBB20CH60
SHAOMingshuang, SUNJun
(School of Electronics & Electrical Engineering, Shanghai Jiaotong University, Shanghai 200030,China)
Abstract An advanced smart power module (SPM) FSBB20CH60 that has the functions of integrated driven,protection and systemcontrol is introduced. With external driven design,a high performance power modul eis realiged. This kind of module is been used to inverter AirCON. The cost had reduced and the performance had improved. Up to now it has been put into production and acquires anticipated effect.
Keywords Key words:SPM; gate driving; level shifter; bootstrap; inverter aircon
0 引言
变频空调的逆变器核心功率级电路———智能功率模块的成本虽然相对较高,但仍以其高可靠性和良好的一致性在大批量生产中获到了极广泛的应用。
1 智能功率模块的一般特点
智能功率模块是电力电子集成电路的一种,集功率器件(IGBT)、驱动电路和保护功能于一体,内部含有门极驱动控制、故障检测和多种保护电路,其核心器件是IGBT。智能功率模块与以往IGBT模块及驱动电路的组件相比具有许多优点:
1)内含驱动电路,保证IGBT最佳驱动条件;
2)内含过电流保护(OC)、短路保护(SC);
3)内含驱动电源欠压保护(UV);
4)内含低损耗IGBT和续流二极管;
5)信号输入端兼容3.3/5VCMOS/LSTTL电平;
6)宽的输入电压范围;
7)内含过热保护;
8)内含故障输出(Fo),向外部输出故障信号,当下桥臂OC、UV保护动作时,通过向控制智能功率模块的微处理器输出故障信号,实现系统保护。
以上是智能功率模块的一般特点,对于具体不同型号的智能功率模块,其内部所集成的功能可能有所差异,但一般都具有上述特点。
2 FSBB20CH60的特点
为了满足人们对低噪声、高性能、小型化、轻量化不断增长的要求及花最小的代价获得最佳的性能和精确的控制。飞兆半导体公司推出了新一代的智能功率模块FSBB20CH60,它除了具有上述一般智能功率模块的优点外,还具有下列特点:
1)上桥臂驱动器电源使用自举(Bootstrap)电源技术,全部驱动共用一个电源;
2)内含隔离高压的快速电平移位电路(level shifter);
3)由于采用了DBC技术,因而热阻极小;
4)3 个独立N 极接线端子结构,用户可方便、高效地检测各相的负载电流,从而实现高效率、低成本电机驱动算法;
5)输入端信号高电平有效,更有利于与CPU的控制连接;
6)控制信号不需要光耦隔离;
7)高压侧外接栅极电阻能让设计人员调节SPM的开关速度,此举有助于降低开关损耗和开关噪声,并且减小电压应力(可能在极端条件下引起HVIC闭锁)。
FSBB20CH60 的内部电路如图1 所示【1】,图1 中上面的3 个高压集成电路HVIC1-HVIC3 驱动三相桥臂的上管,下面的LVIC驱动三相桥臂的下管。其中,HVIC1~HVIC3 中集成了输入PWM 信号整形电路、电平移位电路、欠压保护电路、IGBT驱动电路,其结构示意图如图2所示。
新一代智能功率模块的最大特点就是实现了单电源驱动,其核心技术就是驱动电源采用自举电源技术和电平移位电路。由于SPM内部建立起了电平移位电路,从而省去了光耦,并且允许6 个输入控制端直接连接CPU/DSP。其原理示意图如图3 所示,工作原理分析如下:当输入脉冲信号为"1"时,经过脉冲鉴别器确认,且此时无欠压发生,闩锁逻辑电路上端输出为"1",下端输出为"0",此时,V1导通,V2关断,IGBT1的门极驱动电压为+15V,IGBT1导通,IGBT2关断;反之,当输入脉冲信号为"0"时,IGBT1 关断,IGBT2导通。自举电源由图3中的电阻R1、自举二极管D1和自举电容C1组成,当下桥臂IGBT2导通时,自举电容C1通过R1和D1充电,这里必须保证C1首次充电时,IGBT2导通一定的时间,使得C1充电充分,这样C1两端的电压保持为+15V,足够驱动上桥臂的IGBT1,通过这种自举电源技术,允许IGBT1的源端在P、N之间浮动。
智能功率模块外围电路的设计同以往非单电源智能功率模块的外围电路的设计有所不同,由于采用单电源模块实现共地系统,MCU 发出的6 路PWM 脉冲信号都不需要经过光耦隔离就可以直接连接到SPM相应的引脚【2】。另外,智能功率模块需要有自举电源电路,其中自举二极管需要选择反向恢复时间短的快速二极管,自举电容需要选择容量在10μF 以上的电解电容,以保证自举电源能有效可靠地工作。
在变频空调中由于强弱电的存在,考虑到安全性,现在仍普遍采用隔离方案。基于此,本次设计采用光耦隔离方式,设计出了一种高性能功率模块。这种模块化的设计,有利于整个系统的匹配。
3 高性能功率模块的设计
在高性能功率模块的设计过程中有几个需要注意的关键问题:首先在模块设计时就要考虑其安全性,即模块单独上电时,其自身的安全,由于模块为输入高电平有效,因此,常态下应确保模块输入端为低电平; 其次要注意印制电路板的线间电气间隙和整体布局,以确保电路板的安全和抗EMI的能力;最后还要考虑与整个系统之间的配合。
3.1 故障输出电路的设计
功率级电路中,高性能功率模块自身保护是很重要的,尤其是短路保护。因此用于短路电流检测的功率电阻的选择就至关重要,其大小选择主要是依据模块内部保护电流值的大小进行选择。SPM短路触发电平为0.5 V左右、这里设定瞬时电流保护值为34 A,经计算选择阻值为0.015Ω,功率为10 W的无感电阻。
为了使功能率模块安全工作还需要设计辅助的保护电路,如过/欠压保护电路、过流保护电路等。
SPM 模块自身具有短路,过流、过热、欠压保护等功能,一旦SPM 受损自身实行保护,则通过其VFO口输出保护信号,并由C8作保持保护信号的脉宽设定(参见图4)。具体关系为tFOD=CFOD/(18.3×10-6 ) s,SPM输出的保护信号经IC7光耦隔离、再经三级管Q1跟随后输出到室外板CPU 的模块保护输入口,最终实施SPM模块保护,即起到了保护整个高性能模块的作用。模块过流保护外置限流电阻为R21。R22、C9构成RC滤波取样,故障相应速度的快慢即由它们组成的RC 电路的时间常数决定。
3.2 外部隔离驱动设计
在驱动电路的设计中,先就单个IGBT 驱动进行调试,然后再对上下管进行配对调试,最后进行整体的调试。具体的SPM模块采用的是飞兆单电源模块FSBB20CH60,电路如图4 所示。其驱动信号由室外板CPU 输出,经IC1~IC6 光耦隔离,由Q11~Q16 三极管反相后输入到SPM模块UP、VP、WP、Un、Vn、Wn控制端。R43~R48为光耦IC1~IC6输入的限流电阻,每一路都使用了一个普通三极管和一个普通光耦相连接,代替一高速光耦;同时为达到提高响应速度的目的,平常使三极管工作在临界饱和状态,以补偿由于光耦开通和关断时间的离散性而导致的6 路驱动信号之间的不平衡;减小光耦的输入端电阻,以达到提高光耦的响应速度;R33~R36 分别为光耦IC1~IC3 输出的偏置电阻,R37~R42 分别为三极管反相器Q11~Q16 的偏置电阻,C21~C26为高频噪声吸收电容。SPM 内部由6 只IGBT构成的具有上下桥臂的三相桥式电