发表于:2007-10-30 16:24:00
楼主
摘要:介绍一种采用新型非分光红外NDIR以及电化学传感器的多组分水泥窑废气成分快速分析仪器。该分析仪通过采用基于新型电调制红外光源的多通道红外气体探测技术,配合长寿命电化学O2传感器,可以在一台仪器中实现气体成分中CO2、CO、NO、SO2、O2等气体的实时快速测量。
1 、前言
水泥工业的节能减排已经成为降低我国GDP能耗的一个重要方面,新型干法水泥生产线必将逐步取代老式的立窑生产方式。但是根据我国的实际情况,立窑与新型干法水泥生产企业并存的状况在未来5年内得不到根本改变。因此水泥行业的节能减排必须同时考虑这两方面的工作。实践表明,通过对水泥窑的废气检测,可以指导水泥的能耗,稳定热工制度, 对于降低水泥能耗和排放具有重要意义。
对于立窑,科学的热工标定对于降低热耗十分重要。立窑烟气中的CO2、CO2、O2含量是获取化学不完全燃烧热的重要依据。对于新型干法,窑尾烟室气体分析仪是通过在线连续提取、处理和分析窑尾烟室中的O2、CO和NO的百分含量或PPM含量,来实时监测水泥回转窑内的煅烧状况。因为水泥回转窑内的煅烧情况直接关系到水泥熟料的产量、质量、原燃料的消耗和综合成本。如果窑内煅烧温度过高或热工振荡过大,不仅会大量消耗燃煤,甚至还会损害窑衬;如果煅烧温度过低,就会造成熟料的夹生料,严重影响水泥熟料的质量。一方面,窑尾烟室气体分析仪的合理使用,可以帮助中控操作人员实时了解窑内的煅烧状况和燃煤的完全燃烧状况,指导操作人员及时采取相应措施:如根据CO的含量,实时调节窑头的喷煤量和送风量,以便使燃煤完全燃烧,获得最大限度的热效率,节省能源消耗;也可根据NO的PPM含量合理调节窑头喷煤量的大小,以防止窑内的热工异常现象。另一方面,窑尾烟室气体分析仪还有利于中控操作人员对整个煅烧过程信息做出整体的了解和综合判断,从而指导下一步的具体操作。
在我国的立窑企业,奥氏气体分析仪仍然是获取烟气中CO、CO2、O2的重要手段。我国新型干法水泥生产过程的气体检测大都只能采用昂贵的进口仪器,这也限制了气体分析指导水泥生产技术在我国的推广。奥氏气体分析作为一种经典的化学式手动分析器,具有价格便宜的优点,但该方法是手动操作,精度低、速度慢,已不能适应工业发展需要。近年来色谱分析仪得到推广,但是色谱分析仪需要对气体进行分离后再检测,很难实现实时在线。红外气体分析仪在我国使用多年,但是以往技术往往只能在一套分析仪器分析单一组分,不仅价格昂贵,维修复杂,而且气体之间的相互干扰也没法消除。因此有必要研制一种高效、准确、价格合理的分析仪器用于气体成分的多组分快速或在线监测。本文介绍一种采用新型的电调制红外多组分红外气体分析方法,长寿命电化学O2传感器开发的集成化多组分气体分析仪。
2 、多组分气体分析仪原理
2.1红外线多组分气体分析(CO2、CO、NO、SO)
当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯--比尔(Lambert-Beer)吸收定律。设入射光是平行光,其强度为I0,出射光的强度为I,气体介质的厚度为L。当由气体介质中的分子数dN的吸收所造成的光强减弱为dI时,根据朗伯--比尔吸收定律: dI/I=-KdN,式中K为比例常数。
经积分得:lnI=-KN+α (1) ,
式中:N为吸收气体介质的分子总数;
α为积分常数。显然有N∝cl,c为气体浓度。
则式(1)可写成:
I=exp(α)exp(-KN)=exp(α)exp(-μcL)=I0exp(-μcL) (2)
式(2)表明,光强在气体介质中随浓度c及厚度L按指数规律衰减。吸收系数取决于气体特性,各种气体的吸收系数μ互不相同。对同一气体,μ则随入射波长而变。若吸收介质中含i种吸收气体,
则式(2)应改为:
I=I0exp(-l∑μi ci) (3)
因此对于多种混合气体,为了分析特定组分,应该在传感器或红外光源前安装一个适合分析气体吸收波长的窄带滤光片,使传感器的信号变化只反映被测气体浓度变化。
以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm波长的窄带滤光片后,由红外传感器监测透过4.26um波长红外光的强度,以此表示CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,则在一台仪器内就可以完成对气体成分中CO2、CO、SO2、NO的同时测量2.3 电化学O2分析
O2是一个安全参数,也是过剩空气系数的一个重要参数。本仪器采用了一种长寿命(6年)的电化学O2传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。
3 多组分气体分析仪特点
仪器包括用于 CO、CO2等的NDIR红外气体探测器,以及O2探测器。
3.1 仪器测控系统
为了实现对气体浓度的测量、控制以及自动标定以及对不同组分的干扰校正等功能,需要一个合适的微控制器来管理传感器。本研究采用ADI公司最新推出的ADuc842系统。ADuc842是一个全集成的12位数据采集控制系统,除含有8路12为A/D外,还具有2路D/A、8052内核、64K程序储存器以及UART、I2C、SPI等串行I/O等功能。ADuc842集如此强大的模拟与数字功能与一体,作为多组分气体分析仪测控系统具有体积小、功耗低、性价比高等优势。
ADuc842通过采集参考和测量四路红外信号,一路TCD热导H2传感器信号,以及2路电化学传感器信号,通过测量标准气体曲线,采用非线性校正算法可以直接得到测量气体的浓度,并通过ADuc842系统的串口每1秒向外部设备发送测量浓度数据。在ADuc842多余的数据线和地址线基础上,设计了液晶显示驱动模块、打印驱动模块、键盘输入模块、气泵控制、报警等接口,以便操作分析仪器。通过采用以上技术,在一台分析仪器内实现了以往需要6台分析仪才可完成的工作。
3.2 电调制红外光源
传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备;其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。本研究采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200Hz,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。
3.3 气体干扰校正
从原理上讲,CO,CO2之间由于采用了特征波长,彼此测量 间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO与CO2,以及CO2与参考通道之间具有一定的干扰(Crosstalking, Overlap),因此