(1)精密切割。精密切割技术能够协助精密机械加工制造工程的进行,有效地在不破坏零件的基础上,利用材料的物理和化学性质来获取精度高的部件。火焰切割是比较原始的切割方法,但由于火焰切割的技术要求低、成本较低,能精确地切割厚度大的金属,所以火焰切割仍然是一种很常用的切割方式。除了火焰切割,还有激光切割技术和原子切割技术,从看得见的加工逐渐扩展到看不见的微观切割技术。
(2)精密研磨。精密研磨主要应用于汽车工艺等领域,能够加工出防水防滑的精密机械加工部件,保持或维持原有的粗糙程度。目前已经有多种研磨方式,如磁力研磨技术,利用磁极和磁场来进行研磨,这种研磨方法可以有效地进行全方位的研磨,减少凹凸面的形成。
(3)模具加工。模具加工技术最核心的要素就是加工的精度,因此要求的加工技术很高,市场需求量大,而模具的生产供应量往往很小,因此模具加工技术要不断地进行改善和提高。就以仿形加工为例,仿形加工是以实物为模板,没有数据和图纸,要求技术人员高精度的模仿。面对需求量大的市场环境,新时期的精密机械加工工艺应结合信息技术进行改造,提高自动化的应用频率,增加工作的效率。
(4)精细加工。精细加工是加工细小零件的一种工艺,经常应用于大规模电路、半导体等各个高科技领域之中,能够把零件缩小、减轻原来的重量,把零件细微化,也能在人眼无法识别的细微的原子、电子中进行加工和操作。由于精细加工的应用广泛,未来还会有更多的技术要求和需要完善的地方,所以我们还是要不断地钻研和提高,深入把握微观精密机械加工工艺。